summaryrefslogtreecommitdiff
path: root/src/pm/pm.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/pm/pm.c')
-rw-r--r--src/pm/pm.c231
1 files changed, 231 insertions, 0 deletions
diff --git a/src/pm/pm.c b/src/pm/pm.c
new file mode 100644
index 0000000..99e680b
--- /dev/null
+++ b/src/pm/pm.c
@@ -0,0 +1,231 @@
+/**
+ * This program is free software: you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation, either version 3 of the
+ * License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see
+ * <http://www.gnu.org/licenses/>.
+ *
+ * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
+ *
+ * This file is part of NetBunch, a package for complex network
+ * analysis and modelling. For more information please visit:
+ *
+ * http://www.complex-networks.net/
+ *
+ * If you use this software, please add a reference to
+ *
+ * V. Latora, V. Nicosia, G. Russo
+ * "Complex Networks: Principles, Methods and Applications"
+ * Cambridge University Press (2017)
+ * ISBN: 9781107103184
+ *
+ ***********************************************************************
+ *
+ * This program computes the leading eigenvector and the leading
+ * eigenvalue of a given graph, using the power method. The value of
+ * the leading eigenvalue is printed on the standard output, while
+ * the associated eigenvector is reported.
+ *
+ *
+ */
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#include "utils.h"
+
+#define MAX(x,y) ((x)>(y)? (x) : (y))
+
+
+void usage(char *argv[]){
+ printf("********************************************************************\n"
+ "** **\n"
+ "** -*- pm -*- **\n"
+ "** **\n"
+ "** Compute the leading eigenvalue and the leading eigenvector **\n"
+ "** of a graph, with a relative error smaller than 'eps' using **\n"
+ "** the power method (Rayleigh iteration). **\n"
+ "** **\n"
+ "** The input file 'graph_in' is an edge-list: **\n"
+ "** **\n"
+ "** I_1 J_1 **\n"
+ "** I_2 J_2 **\n"
+ "** I_3 J_3 **\n"
+ "** ... ... **\n"
+ "** I_K J_K **\n"
+ "** **\n"
+ "** If 'graph_in' is equal to '-' (dash), read the file from **\n"
+ "** the standard input (STDIN). **\n"
+ "** **\n"
+ "** 'is_dir' should be set either to 0 (zero) if the graph is **\n"
+ "** undirected, or to 1 (one) if the graph is directed. **\n"
+ "** **\n"
+ "** The value of the leading eigenvalue is printed on the **\n"
+ "** standard output (STDOUT) while the associated eigenvector **\n"
+ "** is printed on the standard error (STDERR). **\n"
+ "** **\n"
+ "** **\n"
+ "********************************************************************\n"
+ " This is Free Software - You can use and distribute it under \n"
+ " the terms of the GNU General Public License, version 3 or later\n\n"
+ " Please visit http://www.complex-networks.net for more information\n\n"
+ " (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n"
+ "********************************************************************\n\n"
+ );
+
+ printf("Usage: %s <graph_in> <is_dir> <eps>\n", argv[0]);
+}
+
+
+/* Product of a matrix by a vector */
+
+void matrix_vector_product(unsigned int *I, unsigned int *J, unsigned int K,
+ double *src, double *dst, unsigned int N){
+
+ int i;
+
+ for(i=0; i<N; i ++){
+ dst[i] = 0;
+ }
+
+ for (i=0; i<K; i++){
+ dst[I[i]] += src[J[i]];
+ }
+ return;
+}
+
+/* product between two row vectors (v1 * v2') */
+
+double vector_vector_product(double *v1, double *v2, unsigned int N){
+
+ int i;
+ double sum = 0;
+
+ for(i=0; i<N; i ++){
+ sum += v1[i] * v2[i];
+ }
+ return sum;
+}
+
+/* compute the 2-norm of a vector */
+
+double vector_norm(double *v,unsigned int N){
+
+ double norm = 0.0;
+ int i;
+
+ for(i=0; i<N; i++){
+ norm += v[i] * v[i];
+ }
+ norm = sqrt(norm);
+ return norm;
+}
+
+
+double compute_relative_error(double *x_new, double *x_old, double lambda, unsigned int N){
+
+ double val, num, den;
+ int i;
+
+ num = den = 0.0;
+ for (i=0; i<N; i++){
+ val = x_new[i] - lambda * x_old [i];
+ num += val * val;
+ den += x_new[i] * x_new[i];
+ }
+ return sqrt(num / den);
+}
+
+
+int main(int argc, char *argv[]){
+
+ unsigned int *I, *J;
+ unsigned int N, K;
+ double *x1, *x2, *tmp;
+ double norm, lambda, err, eps;
+ int i, is_dir;
+
+ FILE *filein, *fileout;
+
+ if(argc < 4){
+ usage(argv);
+ exit(1);
+ }
+
+
+ if (!strcmp(argv[1], "-")){
+ /* take the input from STDIN */
+ filein = stdin;
+ }
+ else {
+ filein = openfile_or_exit(argv[1], "r", 2);
+ }
+ is_dir = atoi(argv[2]);
+ eps = fabs(atof(argv[3]));
+ lambda = 0.0;
+
+
+ K = read_ij(filein, &I, &J);
+ if (! is_dir){
+ K = 2*K;
+ I = realloc(I, K * sizeof(unsigned int));
+ J = realloc(J, K * sizeof(unsigned int));
+ for (i=K/2; i<K; i++){
+ I[i] = J[i-K/2];
+ J[i] = I[i-K/2];
+ }
+
+ }
+ N = 1 + MAX(find_max(I, K), find_max(J, K));
+
+ fclose(filein);
+
+ x1 = malloc(N * sizeof(double));
+ x2 = malloc(N * sizeof(double));
+
+ for(i=0; i<N; i++){
+ x1[i] = 1;
+ x2[i] = 0;
+ }
+
+ /* The following cycle is the actual implementation of the power
+ method (Rayleigh iteration) */
+ err = 100*eps;
+
+ while (err > eps) {
+ norm = vector_norm(x1, N);
+ for(i=0; i<N; i ++){
+ x1[i] /= norm;
+ }
+ matrix_vector_product(I, J, K, x1, x2, N);
+ lambda = vector_vector_product(x2, x1, N);
+ /* compute the relative error */
+ err = compute_relative_error(x2, x1, lambda, N);
+ tmp = x1;
+ x1 = x2;
+ x2 = tmp;
+ }
+
+ fileout = stderr;
+ norm = vector_norm(x1, N);
+
+ for(i=0; i<N; i++){
+ fprintf(fileout, "%d %g\n", i, x1[i]/norm);
+ }
+ printf("%2.15g\n", lambda);
+ free(I);
+ free(J);
+ free(x1);
+ free(x2);
+}