diff options
author | KatolaZ <katolaz@freaknet.org> | 2017-09-27 15:06:31 +0100 |
---|---|---|
committer | KatolaZ <katolaz@freaknet.org> | 2017-09-27 15:06:31 +0100 |
commit | 3aee2fd43e3059a699af2b63c6f2395e5a55e515 (patch) | |
tree | 58c95505a0906ed9cfa694f9dbd319403fd8f01d /src/pm/pm.c |
First commit on github -- NetBunch 1.0
Diffstat (limited to 'src/pm/pm.c')
-rw-r--r-- | src/pm/pm.c | 231 |
1 files changed, 231 insertions, 0 deletions
diff --git a/src/pm/pm.c b/src/pm/pm.c new file mode 100644 index 0000000..99e680b --- /dev/null +++ b/src/pm/pm.c @@ -0,0 +1,231 @@ +/** + * This program is free software: you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation, either version 3 of the + * License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see + * <http://www.gnu.org/licenses/>. + * + * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk> + * + * This file is part of NetBunch, a package for complex network + * analysis and modelling. For more information please visit: + * + * http://www.complex-networks.net/ + * + * If you use this software, please add a reference to + * + * V. Latora, V. Nicosia, G. Russo + * "Complex Networks: Principles, Methods and Applications" + * Cambridge University Press (2017) + * ISBN: 9781107103184 + * + *********************************************************************** + * + * This program computes the leading eigenvector and the leading + * eigenvalue of a given graph, using the power method. The value of + * the leading eigenvalue is printed on the standard output, while + * the associated eigenvector is reported. + * + * + */ + + +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <math.h> + +#include "utils.h" + +#define MAX(x,y) ((x)>(y)? (x) : (y)) + + +void usage(char *argv[]){ + printf("********************************************************************\n" + "** **\n" + "** -*- pm -*- **\n" + "** **\n" + "** Compute the leading eigenvalue and the leading eigenvector **\n" + "** of a graph, with a relative error smaller than 'eps' using **\n" + "** the power method (Rayleigh iteration). **\n" + "** **\n" + "** The input file 'graph_in' is an edge-list: **\n" + "** **\n" + "** I_1 J_1 **\n" + "** I_2 J_2 **\n" + "** I_3 J_3 **\n" + "** ... ... **\n" + "** I_K J_K **\n" + "** **\n" + "** If 'graph_in' is equal to '-' (dash), read the file from **\n" + "** the standard input (STDIN). **\n" + "** **\n" + "** 'is_dir' should be set either to 0 (zero) if the graph is **\n" + "** undirected, or to 1 (one) if the graph is directed. **\n" + "** **\n" + "** The value of the leading eigenvalue is printed on the **\n" + "** standard output (STDOUT) while the associated eigenvector **\n" + "** is printed on the standard error (STDERR). **\n" + "** **\n" + "** **\n" + "********************************************************************\n" + " This is Free Software - You can use and distribute it under \n" + " the terms of the GNU General Public License, version 3 or later\n\n" + " Please visit http://www.complex-networks.net for more information\n\n" + " (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n" + "********************************************************************\n\n" + ); + + printf("Usage: %s <graph_in> <is_dir> <eps>\n", argv[0]); +} + + +/* Product of a matrix by a vector */ + +void matrix_vector_product(unsigned int *I, unsigned int *J, unsigned int K, + double *src, double *dst, unsigned int N){ + + int i; + + for(i=0; i<N; i ++){ + dst[i] = 0; + } + + for (i=0; i<K; i++){ + dst[I[i]] += src[J[i]]; + } + return; +} + +/* product between two row vectors (v1 * v2') */ + +double vector_vector_product(double *v1, double *v2, unsigned int N){ + + int i; + double sum = 0; + + for(i=0; i<N; i ++){ + sum += v1[i] * v2[i]; + } + return sum; +} + +/* compute the 2-norm of a vector */ + +double vector_norm(double *v,unsigned int N){ + + double norm = 0.0; + int i; + + for(i=0; i<N; i++){ + norm += v[i] * v[i]; + } + norm = sqrt(norm); + return norm; +} + + +double compute_relative_error(double *x_new, double *x_old, double lambda, unsigned int N){ + + double val, num, den; + int i; + + num = den = 0.0; + for (i=0; i<N; i++){ + val = x_new[i] - lambda * x_old [i]; + num += val * val; + den += x_new[i] * x_new[i]; + } + return sqrt(num / den); +} + + +int main(int argc, char *argv[]){ + + unsigned int *I, *J; + unsigned int N, K; + double *x1, *x2, *tmp; + double norm, lambda, err, eps; + int i, is_dir; + + FILE *filein, *fileout; + + if(argc < 4){ + usage(argv); + exit(1); + } + + + if (!strcmp(argv[1], "-")){ + /* take the input from STDIN */ + filein = stdin; + } + else { + filein = openfile_or_exit(argv[1], "r", 2); + } + is_dir = atoi(argv[2]); + eps = fabs(atof(argv[3])); + lambda = 0.0; + + + K = read_ij(filein, &I, &J); + if (! is_dir){ + K = 2*K; + I = realloc(I, K * sizeof(unsigned int)); + J = realloc(J, K * sizeof(unsigned int)); + for (i=K/2; i<K; i++){ + I[i] = J[i-K/2]; + J[i] = I[i-K/2]; + } + + } + N = 1 + MAX(find_max(I, K), find_max(J, K)); + + fclose(filein); + + x1 = malloc(N * sizeof(double)); + x2 = malloc(N * sizeof(double)); + + for(i=0; i<N; i++){ + x1[i] = 1; + x2[i] = 0; + } + + /* The following cycle is the actual implementation of the power + method (Rayleigh iteration) */ + err = 100*eps; + + while (err > eps) { + norm = vector_norm(x1, N); + for(i=0; i<N; i ++){ + x1[i] /= norm; + } + matrix_vector_product(I, J, K, x1, x2, N); + lambda = vector_vector_product(x2, x1, N); + /* compute the relative error */ + err = compute_relative_error(x2, x1, lambda, N); + tmp = x1; + x1 = x2; + x2 = tmp; + } + + fileout = stderr; + norm = vector_norm(x1, N); + + for(i=0; i<N; i++){ + fprintf(fileout, "%d %g\n", i, x1[i]/norm); + } + printf("%2.15g\n", lambda); + free(I); + free(J); + free(x1); + free(x2); +} |