summaryrefslogtreecommitdiff
path: root/models/nullmodels/model_layer_growth.py
diff options
context:
space:
mode:
authorKatolaZ <katolaz@yahoo.it>2015-10-19 16:23:00 +0100
committerKatolaZ <katolaz@yahoo.it>2015-10-19 16:23:00 +0100
commitdf8386f75b0538075d72d52693836bb8878f505b (patch)
tree704c2a0836f8b9fd9f470c12b6ae05637c431468 /models/nullmodels/model_layer_growth.py
parent363274e79eade464247089c105260bc34940da07 (diff)
First commit of MAMMULT code
Diffstat (limited to 'models/nullmodels/model_layer_growth.py')
-rw-r--r--models/nullmodels/model_layer_growth.py121
1 files changed, 121 insertions, 0 deletions
diff --git a/models/nullmodels/model_layer_growth.py b/models/nullmodels/model_layer_growth.py
new file mode 100644
index 0000000..46b4c0f
--- /dev/null
+++ b/models/nullmodels/model_layer_growth.py
@@ -0,0 +1,121 @@
+####
+##
+## layer-by-layer multiplex growth
+##
+## - We start from a multiplex with M_0 layers, with a certain number of
+## active nodes each
+##
+## - Each new layer arrives with a certain number N\lay{\alpha} of nodes
+## to be activated (this number is sampled from the observed distribution
+## of N\lay{\alpha}, like in the airlines multiplex)
+##
+## - Each node $i$ is activated with a probability proportional to the
+## number of existing layers in which it is already active, added to an
+## attractivity A :
+##
+## P_i(t) \propto A + B_i(t)
+##
+## - the hope is that A might tune the exponent of the resulting distribution
+## of B_i.....
+##
+##
+## This script takes as input a file which contains the degrees of the
+## layers, the total number of nodes in the multiplex, the initial
+## number M0 of layers in the multiplex and the attractiveness
+## parameter A. If "RND" is specified as a third parameter, then the
+## sequence of N\lay{\alpha} is shuffled
+##
+## Gives as output a list of node-layer participation
+##
+
+import sys
+import random
+
+if len(sys.argv) < 5:
+ print "Usage: %s <layers_N> <N> <M0> <A> [RND]" % sys.argv[0]
+ sys.exit(1)
+
+N = int(sys.argv[2])
+M0 = int(sys.argv[3])
+A = int(sys.argv[4])
+
+layer_degs = []
+
+
+if len(sys.argv) > 5 and sys.argv[5] == "RND":
+ randomize = True
+else:
+ randomize = False
+
+lines = open(sys.argv[1]).readlines()
+
+M = 0
+
+
+for l in lines:
+ if l[0] == "#":
+ continue
+ n = [int(x) for x in l.strip(" \n").split(" ")][0]
+ layer_degs.append(n)
+ M += 1
+
+
+if randomize:
+ random.shuffle(layer_degs)
+
+## the list node_Bi contains, at each time, the attachment
+## probabilities, i.e. it is a list which contains each node $i$
+## exactly $A + B_i$ times
+
+node_Bi = []
+
+#
+# initialize the distribution of attachment proibabilities, giving to
+# all nodes an attachment probability equal to A
+#
+
+for i in range(N):
+ for j in range(A):
+ node_Bi.append(i)
+
+layers = []
+
+
+for i in range(M0):
+ N_alpha = layer_degs.pop()
+ node_list = []
+ num_nodes = 0
+ while num_nodes < N_alpha:
+ val = random.choice(range(N))
+ if val not in node_list:
+ node_list.append(val)
+ num_nodes += 1
+ for n in node_list:
+ node_Bi.append(n)
+ layers.append(node_list)
+ i += 1
+
+
+#sys.exit(1)
+
+while i < M:
+ N_alpha = layer_degs.pop()
+ node_list = []
+ num_nodes = 0
+ while num_nodes < N_alpha:
+ val = random.choice(node_Bi)
+ if val not in node_list:
+ node_list.append(val)
+ num_nodes += 1
+ for n in node_list:
+ node_Bi.append(n)
+ layers.append(node_list)
+ i += 1
+
+#print layers
+
+for i in range(M):
+ node_list = layers[i]
+ for n in node_list:
+ print n, i
+