diff options
author | KatolaZ <katolaz@yahoo.it> | 2015-10-19 16:23:00 +0100 |
---|---|---|
committer | KatolaZ <katolaz@yahoo.it> | 2015-10-19 16:23:00 +0100 |
commit | df8386f75b0538075d72d52693836bb8878f505b (patch) | |
tree | 704c2a0836f8b9fd9f470c12b6ae05637c431468 /models/nullmodels | |
parent | 363274e79eade464247089c105260bc34940da07 (diff) |
First commit of MAMMULT code
Diffstat (limited to 'models/nullmodels')
-rw-r--r-- | models/nullmodels/model_MDM.py | 66 | ||||
-rw-r--r-- | models/nullmodels/model_MSM.py | 65 | ||||
-rw-r--r-- | models/nullmodels/model_hypergeometric.py | 56 | ||||
-rw-r--r-- | models/nullmodels/model_layer_growth.py | 121 |
4 files changed, 308 insertions, 0 deletions
diff --git a/models/nullmodels/model_MDM.py b/models/nullmodels/model_MDM.py new file mode 100644 index 0000000..5b0a969 --- /dev/null +++ b/models/nullmodels/model_MDM.py @@ -0,0 +1,66 @@ +#### +## +## +## This is the vertical participation model. For each node i, we use +## exactly the same value of B_i as in the original network, but we +## choose at random the layers in which node i will be active. This +## breaks down intra-layer correlations. +## +## We get as input a file which reports, for each value of B_i, the +## number of nodes in the original network which have that value, i the format: +## +## B_i N(B_i) +## +## +## +## The output is the obtained distribution of bit-strings. +## +## + +import sys +import random + + +def to_binary(l): + s = 0 + e = 0 + for v in l: + s += v * pow(2,e) + e +=1 + return s + + +if len(sys.argv) < 3: + print "Usage: %s <Bi_file> <M>" % sys.argv[0] + sys.exit(1) + +M = int(sys.argv[2]) + +layers = range(M) + +distr = {} + +with open(sys.argv[1], "r") as f: + for l in f: + if l[0] == "#": + continue + val, num = [int(x) for x in l.strip(" \n").split(" ")] + for j in range(num): + node_layers = random.sample(layers, val) + node_bitstring = [0 for x in range(M)] + #print node_bitstring, node_layers + for i in node_layers: + #print i, + node_bitstring[i] = 1 + #print node_bitstring + + bs = to_binary(node_bitstring) + if bs in distr: + distr[bs] += 1 + else: + distr[bs] = 1 + +for k in distr: + bin_list = bin(k) + bin_num = sum([int(x) if x=='1' else 0 for x in bin_list[2:]]) + sys.stderr.write("%d %0175s %d \n" % (bin_num, bin_list[2:], distr[k])) diff --git a/models/nullmodels/model_MSM.py b/models/nullmodels/model_MSM.py new file mode 100644 index 0000000..2c30df5 --- /dev/null +++ b/models/nullmodels/model_MSM.py @@ -0,0 +1,65 @@ +#### +## +## +## Create a synthetic multiplex network in which a node $i$ appears at +## each layer $\alpha$ with a probability equal to $B_i$, which is the +## fraction of layers in which node $i$ participate in the original +## multiplex. +## +## Take a file of node binary participation indices, and sample a +## multiplex compatible with that distribution +## +## +## The input file is in the format: +## +## nodeID_i B_i +## +## The output file is a node-layer participation file, in the format +## +## node_id1 layer_id1 +## node_id2 layer_id2 +## ..... +## + +import sys + +import random + +if len(sys.argv) < 3: + print "Usage: %s <filein> <M>" % sys.argv[0] + sys.exit(1) + +M = int(sys.argv[2]) + +bin_index = {} +node_ids = [] + +lines = open(sys.argv[1]).readlines() + + +for l in lines: + if l[0] == "#": + continue + elems = [int(x) for x in l.strip(" \n").split(" ")] + bin_index[elems[0]] = 1.0 * elems[1]/M + node_ids.append(elems[0]) + +N = len(node_ids) + +node_layers = {} + +for alpha in range (M): + for i in node_ids: + val = random.random() + if val < bin_index[i]: + if node_layers.has_key(i): + node_layers[i].append(alpha) + else: + node_layers[i] = [alpha] + + +for i in node_ids: + if node_layers.has_key(i): + for j in range(len(node_layers[i])): + print i, node_layers[i][j] + diff --git a/models/nullmodels/model_hypergeometric.py b/models/nullmodels/model_hypergeometric.py new file mode 100644 index 0000000..0a36237 --- /dev/null +++ b/models/nullmodels/model_hypergeometric.py @@ -0,0 +1,56 @@ +#### +## +## This is the hypergeometric model. Each layer has the same number of +## non-isolated nodes as the initial graph, but the nodes are +## activated at random. The input is a file of number of non-isolated +## nodes in each layer, and the total number of nodes in the multiplex. +## +## The output file is a node-layer participation file, in the format +## +## node_id1 layer_id1 +## node_id2 layer_id2 +## ..... +## + +import sys +import random + +if len(sys.argv) < 3: + print "Usage: %s <layer_N_file> <N>" % sys.argv[0] + sys.exit(1) + +N = int(sys.argv[2]) + +layer_degs = [] +node_layers = {} + +lines = open(sys.argv[1]).readlines() + +M = 0 + + +for l in lines: + if l[0] == "#": + continue + n = [int(x) for x in l.strip(" \n").split(" ")][0] + layer_degs.append(n) + M += 1 + +for i in range(M): + num = layer_degs[i] + added = [] + n = 0 + while n < num: + j = random.choice(range(N)) + if j not in added: + n += 1 + added.append(j) + if node_layers.has_key(j): + node_layers[j].append(i) + else: + node_layers[j] = [i] + +for n in node_layers.keys(): + for i in node_layers[n]: + print n,i + diff --git a/models/nullmodels/model_layer_growth.py b/models/nullmodels/model_layer_growth.py new file mode 100644 index 0000000..46b4c0f --- /dev/null +++ b/models/nullmodels/model_layer_growth.py @@ -0,0 +1,121 @@ +#### +## +## layer-by-layer multiplex growth +## +## - We start from a multiplex with M_0 layers, with a certain number of +## active nodes each +## +## - Each new layer arrives with a certain number N\lay{\alpha} of nodes +## to be activated (this number is sampled from the observed distribution +## of N\lay{\alpha}, like in the airlines multiplex) +## +## - Each node $i$ is activated with a probability proportional to the +## number of existing layers in which it is already active, added to an +## attractivity A : +## +## P_i(t) \propto A + B_i(t) +## +## - the hope is that A might tune the exponent of the resulting distribution +## of B_i..... +## +## +## This script takes as input a file which contains the degrees of the +## layers, the total number of nodes in the multiplex, the initial +## number M0 of layers in the multiplex and the attractiveness +## parameter A. If "RND" is specified as a third parameter, then the +## sequence of N\lay{\alpha} is shuffled +## +## Gives as output a list of node-layer participation +## + +import sys +import random + +if len(sys.argv) < 5: + print "Usage: %s <layers_N> <N> <M0> <A> [RND]" % sys.argv[0] + sys.exit(1) + +N = int(sys.argv[2]) +M0 = int(sys.argv[3]) +A = int(sys.argv[4]) + +layer_degs = [] + + +if len(sys.argv) > 5 and sys.argv[5] == "RND": + randomize = True +else: + randomize = False + +lines = open(sys.argv[1]).readlines() + +M = 0 + + +for l in lines: + if l[0] == "#": + continue + n = [int(x) for x in l.strip(" \n").split(" ")][0] + layer_degs.append(n) + M += 1 + + +if randomize: + random.shuffle(layer_degs) + +## the list node_Bi contains, at each time, the attachment +## probabilities, i.e. it is a list which contains each node $i$ +## exactly $A + B_i$ times + +node_Bi = [] + +# +# initialize the distribution of attachment proibabilities, giving to +# all nodes an attachment probability equal to A +# + +for i in range(N): + for j in range(A): + node_Bi.append(i) + +layers = [] + + +for i in range(M0): + N_alpha = layer_degs.pop() + node_list = [] + num_nodes = 0 + while num_nodes < N_alpha: + val = random.choice(range(N)) + if val not in node_list: + node_list.append(val) + num_nodes += 1 + for n in node_list: + node_Bi.append(n) + layers.append(node_list) + i += 1 + + +#sys.exit(1) + +while i < M: + N_alpha = layer_degs.pop() + node_list = [] + num_nodes = 0 + while num_nodes < N_alpha: + val = random.choice(node_Bi) + if val not in node_list: + node_list.append(val) + num_nodes += 1 + for n in node_list: + node_Bi.append(n) + layers.append(node_list) + i += 1 + +#print layers + +for i in range(M): + node_list = layers[i] + for n in node_list: + print n, i + |