1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/**
* This program is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see
* <http://www.gnu.org/licenses/>.
*
* (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
*
* This file is part of NetBunch, a package for complex network
* analysis and modelling. For more information please visit:
*
* http://www.complex-networks.net/
*
* If you use this software, please add a reference to
*
* V. Latora, V. Nicosia, G. Russo
* "Complex Networks: Principles, Methods and Applications"
* Cambridge University Press (2017)
* ISBN: 9781107103184
*
***********************************************************************
*
* This program computes the leading eigenvector and the leading
* eigenvalue of a given graph, using the power method. The value of
* the leading eigenvalue is printed on the standard output, while
* the associated eigenvector is reported.
*
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "utils.h"
#define MAX(x,y) ((x)>(y)? (x) : (y))
void usage(char *argv[]){
printf("********************************************************************\n"
"** **\n"
"** -*- pm -*- **\n"
"** **\n"
"** Compute the leading eigenvalue and the leading eigenvector **\n"
"** of a graph, with a relative error smaller than 'eps' using **\n"
"** the power method (Rayleigh iteration). **\n"
"** **\n"
"** The input file 'graph_in' is an edge-list: **\n"
"** **\n"
"** I_1 J_1 **\n"
"** I_2 J_2 **\n"
"** I_3 J_3 **\n"
"** ... ... **\n"
"** I_K J_K **\n"
"** **\n"
"** If 'graph_in' is equal to '-' (dash), read the file from **\n"
"** the standard input (STDIN). **\n"
"** **\n"
"** 'is_dir' should be set either to 0 (zero) if the graph is **\n"
"** undirected, or to 1 (one) if the graph is directed. **\n"
"** **\n"
"** The value of the leading eigenvalue is printed on the **\n"
"** standard output (STDOUT) while the associated eigenvector **\n"
"** is printed on the standard error (STDERR). **\n"
"** **\n"
"** **\n"
"********************************************************************\n"
" This is Free Software - You can use and distribute it under \n"
" the terms of the GNU General Public License, version 3 or later\n\n"
" Please visit http://www.complex-networks.net for more information\n\n"
" (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n"
"********************************************************************\n\n"
);
printf("Usage: %s <graph_in> <is_dir> <eps>\n", argv[0]);
}
/* Product of a matrix by a vector */
void matrix_vector_product(unsigned int *I, unsigned int *J, unsigned int K,
double *src, double *dst, unsigned int N){
int i;
for(i=0; i<N; i ++){
dst[i] = 0;
}
for (i=0; i<K; i++){
dst[I[i]] += src[J[i]];
}
return;
}
/* product between two row vectors (v1 * v2') */
double vector_vector_product(double *v1, double *v2, unsigned int N){
int i;
double sum = 0;
for(i=0; i<N; i ++){
sum += v1[i] * v2[i];
}
return sum;
}
/* compute the 2-norm of a vector */
double vector_norm(double *v,unsigned int N){
double norm = 0.0;
int i;
for(i=0; i<N; i++){
norm += v[i] * v[i];
}
norm = sqrt(norm);
return norm;
}
double compute_relative_error(double *x_new, double *x_old, double lambda, unsigned int N){
double val, num, den;
int i;
num = den = 0.0;
for (i=0; i<N; i++){
val = x_new[i] - lambda * x_old [i];
num += val * val;
den += x_new[i] * x_new[i];
}
return sqrt(num / den);
}
int main(int argc, char *argv[]){
unsigned int *I, *J;
unsigned int N, K;
double *x1, *x2, *tmp;
double norm, lambda, err, eps;
int i, is_dir;
FILE *filein, *fileout;
if(argc < 4){
usage(argv);
exit(1);
}
if (!strcmp(argv[1], "-")){
/* take the input from STDIN */
filein = stdin;
}
else {
filein = openfile_or_exit(argv[1], "r", 2);
}
is_dir = atoi(argv[2]);
eps = fabs(atof(argv[3]));
lambda = 0.0;
K = read_ij(filein, &I, &J);
if (! is_dir){
K = 2*K;
I = realloc(I, K * sizeof(unsigned int));
J = realloc(J, K * sizeof(unsigned int));
for (i=K/2; i<K; i++){
I[i] = J[i-K/2];
J[i] = I[i-K/2];
}
}
N = 1 + MAX(find_max(I, K), find_max(J, K));
fclose(filein);
x1 = malloc(N * sizeof(double));
x2 = malloc(N * sizeof(double));
for(i=0; i<N; i++){
x1[i] = 1;
x2[i] = 0;
}
/* The following cycle is the actual implementation of the power
method (Rayleigh iteration) */
err = 100*eps;
while (err > eps) {
norm = vector_norm(x1, N);
for(i=0; i<N; i ++){
x1[i] /= norm;
}
matrix_vector_product(I, J, K, x1, x2, N);
lambda = vector_vector_product(x2, x1, N);
/* compute the relative error */
err = compute_relative_error(x2, x1, lambda, N);
tmp = x1;
x1 = x2;
x2 = tmp;
}
fileout = stderr;
norm = vector_norm(x1, N);
for(i=0; i<N; i++){
fprintf(fileout, "%d %g\n", i, x1[i]/norm);
}
printf("%2.15g\n", lambda);
free(I);
free(J);
free(x1);
free(x2);
}
|