summaryrefslogtreecommitdiff
path: root/src/ba/ba.c
blob: e395d6df9c594f9e5380d136634249473bf30f65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/**
 *  This program is free software: you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License as
 *  published by the Free Software Foundation, either version 3 of the
 *  License, or (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License
 *  along with this program.  If not, see
 *  <http://www.gnu.org/licenses/>.
 *
 *  (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
 * 
 *  This file is part of NetBunch, a package for complex network
 *  analysis and modelling. For more information please visit:
 *
 *             http://www.complex-networks.net/
 *
 *  If you use this software, please add a reference to 
 *
 *               V. Latora, V. Nicosia, G. Russo             
 *   "Complex Networks: Principles, Methods and Applications"
 *              Cambridge University Press (2017) 
 *                ISBN: 9781107103184
 *
 ***********************************************************************
 *
 *
 *  This program grows a network with N nodes using the linear
 *  preferential attachment model proposed by Barabasi and
 *  Albert. Each new node creates m links, and the initial (seed)
 *  network is a ring of n0>=m nodes.
 *
 *
 *  References:
 *
 *  [1] A.-L. Barabasi, R. Albert, "Emergence of scaling in random
 *  networks", Science 286, 509-512 (1999).
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

void usage(char *argv[]){
  printf("********************************************************************\n"
         "**                                                                **\n"
         "**                        -*-     ba     -*-                      **\n"
         "**                                                                **\n"
         "**   Grow a scale-free network of 'N' nodes using the linear      **\n"
         "**   preferential attachment model (Barabasi-Albert).             **\n"
         "**   The initial network is a ring of 'n0' nodes, and each new    **\n"
         "**   node creates 'm' edges.                                      **\n"
         "**                                                                **\n"
         "**   The program prints on STDOUT the edge-list of the final      **\n"
         "**   graph.                                                       **\n"
         "**                                                                **\n"
         "********************************************************************\n"
         " This is Free Software - You can use and distribute it under \n"
         " the terms of the GNU General Public License, version 3 or later\n\n"
         " (c) Vincenzo Nicosia 2010-2017 (v.nicosia@qmul.ac.uk)\n\n"
         "********************************************************************\n\n"
         );
  printf("Usage: %s <N> <m> <n0>\n", argv[0]);

}



int init_network(unsigned int **S, unsigned int n0){
  
  int n;

  for(n=0; n<n0; n++){
    S[0][n] = n;
    S[1][n] = (n+1) % n0;
  }
  return n;
}

int select_neighbour(unsigned int **S, unsigned int S_num){
  
  int d;
  
  d = rand()%(S_num * 2);
  if (d < S_num)
    return S[0][d];
  else{
    return S[1][d-S_num];
  }
}

/* check if 'd' is already a neighbour of 'i' */

int already_neighbour(unsigned int **S, unsigned int S_num, unsigned int j, unsigned int d){

   int i;

   for(i=S_num; i< S_num + j; i ++){
     if (S[1][i] == d)
       return 1;
   }
   return 0;
}

unsigned int grow_ba_network(unsigned int **S, unsigned int N,
                             unsigned int m, unsigned int n0, unsigned int S_num){
  
  int i, j;
  int n, d;
  
  for(i=0; i<N-n0; i++){
    /* Let's add a new node */
    n = n0 + i; /* This is the id of the new node */
    for(j=0; j<m; j++){
      S[0][S_num+j] = n;
      d = select_neighbour(S, S_num);
      while(already_neighbour(S, S_num, j, d)){
        d = select_neighbour(S, S_num);
      }
      S[1][S_num + j] = d;
    }
    S_num += m;
  }
  return S_num;
}



int main(int argc, char *argv[]){
  
  unsigned int **S;
  unsigned int S_num, S_size, i;
  int m, n0, N;
  
  if (argc < 4){
    usage(argv);
    exit(1);
  }

  srand(time(NULL));

  N = atoi(argv[1]);
  m = atoi(argv[2]);
  n0 = atoi(argv[3]);
  S_size = (N+n0) * m ;

  if (N < 1){
    fprintf(stderr, "N must be positive\n");
    exit(1);
  }
  if(m > n0){
    fprintf(stderr, "n0 cannot be smaller than m\n");
    exit(1);

  }
  if (n0<1){
    fprintf(stderr, "n0 must be positive\n");
    exit(1);
  }
  
  if (m < 1){
    fprintf(stderr, "m must be positive\n");
    exit(1);
  }
  
  S = malloc(2 * sizeof(unsigned int*));
  S[0] = malloc(S_size * sizeof(unsigned int));
  S[1] = malloc(S_size * sizeof(unsigned int));
  
  S_num = init_network(S, n0);
  S_num = grow_ba_network(S, N, m, n0, S_num);
  for(i=0; i<S_num; i ++){
    printf("%d %d\n",S[0][i], S[1][i]);
  }
  free(S[0]);
  free(S[1]);
  free(S);
}