1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
er_A(1) -- Sample a random graph from the Erdos-Renyi model A
======
## SYNOPSIS
`er_A` <N> <K> [<fileout>]
## DESCRIPTION
`er_A` samples a random graph with <N> nodes and <K> edges from the
Erdos-Renyi model A, i.e. the ensemble of random graphs where K links
are placed uniformly at random among N nodes. The program dumps the
edge list of the resulting graph on output. If the optional <fileout>
is provided, the output is written on a file with that name.
## PARAMETERS
* <N>:
Number of nodes in the final graph.
* <K>:
Number of edges in the final graph.
* <fileout>:
The (optional) name of the filename where the edge list of the
graph will be saved.
## EXAMPLES
The following command:
$ er_A 1000 3000
samples an undirected random network with <N=1000> nodes and <K=3000>
edges using the Erdos-Renyi model A. The output of the command `er_A`
will be the edge-list of the resulting graph, where each (undirected)
edge is reported only once. In order to be useful, such edge-list
should be saved into a file. The following command:
$ er_A 1000 3000 > er_A_1000_3000.net
will save the resulting graph in the file er\_A\_1000\_3000.net. Notice
the usage of the symbol "\>" to redirect the output of the program to a
file.
## SEE ALSO
er_B(1), ws(1)
## REFERENCES
* P\. Erdos, & A. Rényi, "On Random Graphs I", Publ. Math. Debrecen, 6,
290 (1959)
* P\.Erdos, & A. Renyi, "On the evolution of random graphs"
Publ. Math. Inst. Hungary. Acad. Sci., 5, 17-61 (1960)
* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Chapter 3, Cambridge University Press
(2017)
* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Appendix 10, Cambridge University Press
(2017)
## AUTHORS
(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 `<v.nicosia@qmul.ac.uk>`.
|