diff options
Diffstat (limited to 'src/bbv/bbv.c')
-rw-r--r-- | src/bbv/bbv.c | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/src/bbv/bbv.c b/src/bbv/bbv.c new file mode 100644 index 0000000..60ddd5c --- /dev/null +++ b/src/bbv/bbv.c @@ -0,0 +1,335 @@ +/** + * This program is free software: you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation, either version 3 of the + * License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see + * <http://www.gnu.org/licenses/>. + * + * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk> + * + * This file is part of NetBunch, a package for complex network + * analysis and modelling. For more information please visit: + * + * http://www.complex-networks.net/ + * + * If you use this software, please add a reference to + * + * V. Latora, V. Nicosia, G. Russo + * "Complex Networks: Principles, Methods and Applications" + * Cambridge University Press (2017) + * ISBN: 9781107103184 + * + *********************************************************************** + * + * + * This program grows a weighted network using the model proposed by + * Barrat, Barthelemy, and Vespignani. + * + * References: + * + * [1] A. Barrat, M. Barthelemy, and A. Vespignani. "Weighted + * Evolving Networks: Coupling Topology and Weight + * Dynamics". Phys. Rev. Lett. 92 (2004), 228701. + * + * [2] A. Barrat, M. Barthelemy, and A. Vespignani. "Modeling the + * evolution of weighted networks". Phys. Rev. E 70 (2004), + * 066149. + * + */ + +#include <stdio.h> +#include <stdlib.h> +#include <time.h> +#include <math.h> + +#include "cum_distr.h" + +void usage(char *argv[]){ + printf("********************************************************************\n" + "** **\n" + "** -*- bbv -*- **\n" + "** **\n" + "** Grow a weighted network of 'N' nodes using the model **\n" + "** proposed by Barrat-Barthelemy-Vespignani. **\n" + "** **\n" + "** The initial network is a clique of 'n0' nodes, and each new **\n" + "** node creates 'm' edges. All edges have an initial weight **\n" + "** equal to 'w0', and the attachment probability in of the **\n" + "** form: **\n" + "** **\n" + "** P(i->j) ~ s_j **\n" + "** **\n" + "** where s_j is the strength of node j. The parameter 'delta' **\n" + "** tunes the rearrangement of edge weights due to the **\n" + "** addition of a new edge. The degree, strength, and weight **\n" + "** distributions of the created graphs are power-laws, **\n" + "** whose esponents depend on the values of 'w0' and 'delta'. **\n" + "** **\n" + "********************************************************************\n" + " This is Free Software - You can use and distribute it under \n" + " the terms of the GNU General Public License, version 3 or later\n\n" + " (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n\n" + "********************************************************************\n\n" + ); + printf("Usage: %s <N> <m> <n0> <w0> <delta>\n", argv[0]); +} + + +typedef struct{ + int id; + double w; + double delta_w; +} link_t; + + +typedef struct { + int id; + int size; + int deg; + double s; + link_t *neighs; +} node_t; + + +/* create the initial graph as a clique of n0 nodes */ +void init_seed(node_t *G, int n0, double w0, cum_distr_t *d){ + + int i, j, n; + + for(i=0; i< n0; i++){ + G[i].neighs = malloc((n0-1) * sizeof(link_t)); + G[i].size = n0-1; + G[i].deg = n0-1; + n= 0; + for (j=0; j<n0; j++){ + if (i != j){ + G[i].neighs[n].id = j; + G[i].neighs[n].w = w0; + n += 1; + } + } + G[i].s = (n0-1) * w0; + cum_distr_add(d, i, G[i].s); + } +} + +/* add j to the neighbourhood of i with a weight w0, and update the + strength of i */ +void add_neigh(node_t *G, unsigned int i, unsigned int j, double w0){ + + if (G[i].deg == G[i].size){ + G[i].size += 5; + G[i].neighs= realloc(G[i].neighs, G[i].size * sizeof(link_t)); + } + G[i].neighs[G[i].deg].id = j; + G[i].neighs[G[i].deg].w = w0; + G[i].deg += 1; + G[i].s += w0; +} + +/* Add w to the weight of the edge (i,j) */ +void add_weight(node_t *G, int i, int j, double w){ + + int k; + for(k=0; k<G[i].deg; k++){ + if(G[i].neighs[k].id == j){ + G[i].neighs[k].w += w; + } + } +} + +/* Compute the weight increase for each edge connected to node i */ +void compute_delta_weights(node_t *G, int i, double delta){ + int j; + double s; + + s = G[i].s; + + for(j=0; j< G[i].deg; j++){ /* for each neighbour of i */ + /* compute the delta_weight */ + G[i].neighs[j].delta_w = delta * G[i].neighs[j].w / s; + } +} + +/* set the new weights on the edges connected to node i */ +void set_delta_weights(node_t *G, int i, cum_distr_t *distr){ + + int j, neigh; + + double delta_w; + + for(j=0; j<G[i].deg; j++){ + neigh = G[i].neighs[j].id; + delta_w = G[i].neighs[j].delta_w; + /* add delta_w to the weight of (i, neigh) and of (neigh, i) */ + add_weight(G, i, neigh, delta_w); + add_weight(G, neigh, i, delta_w); + + /* update the strength of neigh */ + G[neigh].s += delta_w; + /* add delta_w to the fraction of cum_distr associated to neigh */ + cum_distr_add(distr, neigh, delta_w); + } +} + +/* return 1 if i is in the array v */ + +int is_neigh(int *v, int N, int i){ + + int j; + + for(j=0; j<N; j++){ + if (v[j] == i) + return 1; + } + return 0; +} + +/* + * print the edges of the undirected graph G, with the corresponding + * weight. Each edge is printed only once + * + */ +void dump_net(node_t *G, int N){ + + int i, j; + + double tot_w = 0.0; + + for(i=0; i<N; i++){ + for(j=0; j<G[i].deg; j++){ + if(G[i].neighs[j].id > i){ + tot_w += G[i].neighs[j].w; + printf("%d %d %g\n", i, G[i].neighs[j].id, G[i].neighs[j].w); + } + } + } +} + + +/* grow a weighted graph using the BBV model */ +node_t* bbv(unsigned int N, unsigned int n0, unsigned int m, double w0, double delta){ + + node_t *G; + int t, i, j; + cum_distr_t *distr = NULL; + int *tmp_neighs; + + distr = cum_distr_init(N * m); + + + G = malloc(N * sizeof(node_t)); + tmp_neighs = malloc(m * sizeof(int)); + + init_seed(G, n0, w0, distr); + + + for(t=n0; t<N; t++){ + /* Initialize the new node */ + G[t].neighs = malloc(m * sizeof(link_t)); + G[t].size = m; + G[t].deg = 0; + /* Sample the m neighbours */ + for(i=0; i<m; i++){ + j = cum_distr_sample(distr); + while(is_neigh(tmp_neighs, i, j)){ + j = cum_distr_sample(distr); + } + tmp_neighs[i] = j; + } + /* compute the weight increase for the neighbours of the + new node t */ + for(i=0; i<m; i++){/* for each neighbour 'l' of the new node t */ + /* compute the weight increase for the edges around 'l' */ + compute_delta_weights(G, tmp_neighs[i], delta); + } + /* Now we update the weights */ + for(i=0; i<m; i++){/* for each neighbour 'l' of the new node t */ + set_delta_weights(G, tmp_neighs[i], distr); + add_neigh(G, t, tmp_neighs[i], w0); + add_neigh(G, tmp_neighs[i], t, w0); + /* We need to add delta to the strength of tmp_neighs[i] {notice + that w0 has been already added by the previous call to + add_neigh()}*/ + G[tmp_neighs[i]].s += delta; + cum_distr_add(distr, tmp_neighs[i], delta + w0); + } + + /* Finally, we update the strength of node t */ + G[t].s = w0 * m; + cum_distr_add(distr, t, G[t].s); + } + free(tmp_neighs); + cum_distr_destroy(distr); + return G; +} + + + +int main(int argc, char *argv[]){ + + int N, n0, m, i; + double w0, delta; + + node_t *net; + + if (argc < 6){ + usage(argv); + exit(1); + } + + N = atoi(argv[1]); + m = atoi(argv[2]); + n0 = atoi(argv[3]); + w0 = atof(argv[4]); + delta = atof(argv[5]); + + srand(time(NULL)); + + if (N < 1){ + fprintf(stderr, "N must be positive\n"); + exit(1); + } + if(m > n0){ + fprintf(stderr, "n0 cannot be smaller than m\n"); + exit(1); + + } + if (n0<1){ + fprintf(stderr, "n0 must be positive\n"); + exit(1); + } + + if (m < 1){ + fprintf(stderr, "m must be positive\n"); + exit(1); + } + + if (w0 <= 0.0){ + fprintf(stderr, "w0 must be positive\n"); + exit(1); + } + + if (delta < 0.0){ + fprintf(stderr, "delta must be positive\n"); + exit(1); + } + + + net = bbv(N, n0, m, w0, delta); + dump_net(net, N); + + for(i=0; i<N; i++){ + free(net[i].neighs); + } + + free(net); +} |