diff options
Diffstat (limited to 'doc/hv_net.1')
-rw-r--r-- | doc/hv_net.1 | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/doc/hv_net.1 b/doc/hv_net.1 new file mode 100644 index 0000000..70cf788 --- /dev/null +++ b/doc/hv_net.1 @@ -0,0 +1,83 @@ +.\" generated with Ronn/v0.7.3 +.\" http://github.com/rtomayko/ronn/tree/0.7.3 +. +.TH "HV_NET" "1" "September 2017" "www.complex-networks.net" "www.complex-networks.net" +. +.SH "NAME" +\fBhv_net\fR \- Sample a random graph with an assigned joint degree distribution +. +.SH "SYNOPSIS" +\fBhv_net\fR \fIgraph_in\fR [SHOW] +. +.SH "DESCRIPTION" +\fBhv_net\fR samples a random graph whose joint degree distribution is equal to that of another graph provided as input, using the hidden\-variable model proposed by Boguna ans Pastor\-Satorras\. +. +.SH "PARAMETERS" +. +.TP +\fIgraph_in\fR +File containing the edge list of the existing graph\. If equal to \'\-\' (dash), read the edge list from STDIN\. +. +.TP +SHOW +If the second parameter is equal to \fBSHOW\fR, the program prints on STDERR the hidden variable and actual degree of each node\. +. +.SH "EXAMPLES" +Let us assume that we want to create a graph whose joint degree distribution is equal to that of the graph contained in \fBAS\-20010316\.net\fR (i\.e\., the graph of the Internet at the AS level in March 2001)\. We can use the command: +. +.IP "" 4 +. +.nf + + $ hv_net AS\-20010316\.net > AS\-20010316\.net_rand +. +.fi +. +.IP "" 0 +. +.P +which will sample a random graph with the same joint\-degree distribution and will save its edge list in the file \fBAS\-20010316\.net_rand\fR (notice the STDOUT redirection operator \fB>\fR)\. Additionally, we can also save the values of the hidden variables and actual degrees of the nodes by specifying \fBSHOW\fR as a second parameter: +. +.IP "" 4 +. +.nf + + $ hv_net AS\-20010316\.net SHOW > AS\-20010316\.net_rand 2>AS\-20010316\.net_rand_hv +. +.fi +. +.IP "" 0 +. +.P +In this case, the file \fBAS\-20010316\.net_rand_hv\fR will contain the values of the hidden variable of each node and of the actual degree of the node in the sampled graph, in the format: +. +.IP "" 4 +. +.nf + + h1 k1 + h2 k2 + \.\.\.\. +. +.fi +. +.IP "" 0 +. +.SH "SEE ALSO" +conf_model_deg(1), conf_model_deg_nocheck(1) +. +.SH "REFERENCES" +. +.IP "\(bu" 4 +M\. Boguna and R\. Pastor\-Satorras\. "Class of correlated random networks with hidden variables"\. Phys\. Rev\. E 68 (2003), 036112\. +. +.IP "\(bu" 4 +V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Chapter 7, Cambridge University Press (2017) +. +.IP "\(bu" 4 +V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Appendix 14, Cambridge University Press (2017) +. +.IP "" 0 +. +.SH "AUTHORS" +(c) Vincenzo \'KatolaZ\' Nicosia 2009\-2017 \fB<v\.nicosia@qmul\.ac\.uk>\fR\. |