diff options
Diffstat (limited to 'doc/f3m.md')
-rw-r--r-- | doc/f3m.md | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/doc/f3m.md b/doc/f3m.md new file mode 100644 index 0000000..63b5ff7 --- /dev/null +++ b/doc/f3m.md @@ -0,0 +1,144 @@ +f3m(1) -- Count all the 3-node subgraphs of a directed graph +====== + +## SYNOPSIS + +`f3m` <graph_in> [<num_random>] + +## DESCRIPTION + +`f3m` performs a motif analysis on <graph_in>, i.e., it counts all the +3-node subgraphs and computes the z-score of that count with respect +to the corresponding configuration model ensemble. + +## PARAMETERS + +* <graph_in>: + input graph (edge list). It must be an existing file. + +* <num_random>: + The number of random graphs to sample from the configuration model + for the computation of the z-score of the motifs. + + +## OUTPUT + +`f3m` prints on the standard output a table with 13 rows, one for each +of the 13 possible 3-node motifs. Each line is in the format: + + motif_number count mean_rnd std_rnd z-score + +where `motif_number` is a number between 1 and 13 that identifies the +motif (see [MOTIF NUMBERS][] below), `count` is the number of +subgraphs ot type `motif_number` found in <graph_in>, `mean_rnd` is +the average number of subgraphs of type `motif_number` in the +corresponding configuration model ensemble, and `std_rnd` is the +associated standard deviation. Finally, `z-score` is the quantity: + + (count - mean_rnd) / std_rnd + +The program also prints a progress bar on STDERR. + + +## MOTIF NUMBERS + +We report below the correspondence between the 13 possible 3-node +subgraphs and the corresponding `motif_number`. In the diagrams, +'O--->O' indicates a single edge form the left node to the right node, +while 'O<==>O' indicates a double (bi-directional) edge between the +two nodes: + + (1) O<---O--->O + + (2) O--->O--->O + + (3) O<==>O--->O + + (4) O--->O<---O + + (5) O--->O--->O + \ ^ + \_______| + + (6) O<==>O--->O + \ ^ + \_______| + + (7) O<==>O<---O + + (8) O<==>O<==>O + + (9) O<---O<---O + \ ^ + \_______| + + (10) O<==>O<---O + \ ^ + \_______| + + (11) O--->O<==>O + \ ^ + \_______| + + (12) O<==>O<==>O + \ ^ + \_______| + + (13) O<==>O<==>O + ^\ ^/ + \\_____// + \_____/ + + + +## EXAMPLES + +To perform a motif analysis on the E.coli transcription regulation +graph, using 1000 randomised networks, we run the command: + + $ f3m e_coli.net 1000 + 1 4760 4400.11 137.679 +2.614 + 2 162 188.78 8.022 -3.338 + 3 0 0.89 3.903 -0.228 + 4 226 238.32 7.657 -1.609 + 5 40 6.54 2.836 +11.800 + 6 0 0.01 0.077 -0.078 + 7 0 0.12 0.642 -0.192 + 8 0 0.00 0.032 -0.032 + 9 0 0.01 0.109 -0.110 + 10 0 0.00 0.000 +0.000 + 11 0 0.00 0.032 -0.032 + 12 0 0.00 0.000 +0.000 + 13 0 0.00 0.000 +0.000 + $ + +Notice that the motif `5` (the so-called "feed-forward loop") has a +z-score equal to 11.8, meaning that it is highly overrepresented in +the E.coli graph with respect to the corresponding configuration model +ensemble. Conversely, the motif `2` (three-node chain) is +underrepresented, as made evident by value of the z-score (-3.338). + +## SEE ALSO + +johnson_cycles(1) + +## REFERENCES + +* R\. Milo et al. "Network Motifs: Simple Building Blocks of Complex + Networks". Science 298 (2002), 824-827. + +* R\. Milo et al. "Superfamilies of evolved and designed networks." + Science 303 (2004), 1538-1542 + +* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles, + Methods and Applications", Chapter 8, Cambridge University Press + (2017) + +* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles, + Methods and Applications", Appendix 16, Cambridge University Press + (2017) + + +## AUTHORS + +(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 `<v.nicosia@qmul.ac.uk>`. |