summaryrefslogtreecommitdiff
path: root/src/gn/gn.c
diff options
context:
space:
mode:
authorKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
committerKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
commit3aee2fd43e3059a699af2b63c6f2395e5a55e515 (patch)
tree58c95505a0906ed9cfa694f9dbd319403fd8f01d /src/gn/gn.c
First commit on github -- NetBunch 1.0
Diffstat (limited to 'src/gn/gn.c')
-rw-r--r--src/gn/gn.c495
1 files changed, 495 insertions, 0 deletions
diff --git a/src/gn/gn.c b/src/gn/gn.c
new file mode 100644
index 0000000..d69008d
--- /dev/null
+++ b/src/gn/gn.c
@@ -0,0 +1,495 @@
+/**
+ * This program is free software: you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation, either version 3 of the
+ * License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see
+ * <http://www.gnu.org/licenses/>.
+ *
+ * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
+ *
+ * This file is part of NetBunch, a package for complex network
+ * analysis and modelling. For more information please visit:
+ *
+ * http://www.complex-networks.net/
+ *
+ * If you use this software, please add a reference to
+ *
+ * V. Latora, V. Nicosia, G. Russo
+ * "Complex Networks: Principles, Methods and Applications"
+ * Cambridge University Press (2017)
+ * ISBN: 9781107103184
+ *
+ ***********************************************************************
+ *
+ * This program implements the Girvan-Newman algorithm for community
+ * detection, based on the removal of edges with largest betweenness.
+ *
+ *
+ * References:
+ *
+ * [1] M. Girvan and M. E. J. Newman. "Community structure in social
+ * and biological networks". P. Natl. Acad. Sci. USA 99 (2002),
+ * 7821--7826.
+ *
+ */
+
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <math.h>
+
+#include "utils.h"
+
+void usage(char *argv[]){
+
+ printf("********************************************************************\n"
+ "** **\n"
+ "** -*- gn -*- **\n"
+ "** **\n"
+ "** Find the communities of the input graph 'graph_in' using **\n"
+ "** the Girvan-Newman algorithm (successive removal of edges **\n"
+ "** with high betweeneess). **\n"
+ "** **\n"
+ "** The input file 'graph_in' is an edge-list: **\n"
+ "** **\n"
+ "** I_1 J_1 **\n"
+ "** I_2 J_2 **\n"
+ "** I_3 J_3 **\n"
+ "** ... ... **\n"
+ "** I_K J_K **\n"
+ "** **\n"
+ "** If 'graph_in' is equal to '-' (dash), read the file from **\n"
+ "** the standard input (STDIN). **\n"
+ "** **\n"
+ "** The program prints on STDOUT the partition corresponding **\n"
+ "** to the largest value of modularity, in the format: **\n"
+ "** **\n"
+ "** node_1 comm_1 **\n"
+ "** node_2 comm_2 **\n"
+ "** node_3 comm_3 **\n"
+ "** ..... **\n"
+ "** **\n"
+ "** where 'comm_1' is the community to which 'node_1' belongs. **\n"
+ "** **\n"
+ "** The program prints on STDERR the number of communities and **\n"
+ "** the value of modularity obtained after the removal of each **\n"
+ "** edge, in the format: **\n"
+ "** **\n"
+ "** **\n"
+ "** ## nc: NUM_COMM Q_max: Q_MAX **\n"
+ "** nc_1 Q_1 **\n"
+ "** nc_2 Q_2 **\n"
+ "** nc_3 Q_3 **\n"
+ "** ... **\n"
+ "** **\n"
+ "** where 'nc_1', 'nc_2', 'nc_3', etc. is the number of **\n"
+ "** communities (connected components) remaining after the **\n"
+ "** 1st, 2nd, 3rd, etc. edge has been removed, and 'Q_1', **\n"
+ "** 'Q_2', 'Q_3', etc. are the value of the modularity **\n"
+ "** function of the corresponding node partition. The first **\n"
+ "** output line reports the number of communities NUM_COMM **\n"
+ "** and corresponding value of modularity Q_MAX of the best **\n"
+ "** partition found. **\n"
+ "** **\n"
+ "********************************************************************\n"
+ " This is Free Software - You can use and distribute it under \n"
+ " the terms of the GNU General Public License, version 3 or later\n\n"
+ " Please visit http://www.complex-networks.net for more information\n\n"
+ " (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n"
+ "********************************************************************\n\n"
+ );
+ printf("Usage: %s <graph_in>\n", argv[0]);
+ exit(1);
+}
+
+
+void add_predecessor(unsigned int **pred, unsigned int k){
+
+ (*pred)[0] += 1;
+ *pred = realloc(*pred, ((*pred)[0] + 1) * sizeof(unsigned int));
+ (*pred)[ (*pred)[0] ] = k;
+}
+
+
+
+/*
+ *
+ * Compute node and edge betweenness, based on shortest paths
+ * originating on the "num" nodes specified in "nlist". "edge_bet"
+ * should be an appropriately allocated (and initialised to zero!!!!)
+ * vector of length equal to J_slap, and will contain the values of
+ * edge betweenness.
+ *
+ */
+double* compute_bet_dependency_active(unsigned int N, unsigned int *J_slap, unsigned int *r_slap,
+ double *edge_bet, char *active){
+
+ static unsigned int *marked, **preds, *dist, *nj;
+ static double *delta, *cB;
+ int i, j, k, w, idx, cur_node;
+ double val;
+ unsigned int d;
+ unsigned int n, nd, ndp;
+ unsigned int edge_pos;
+
+ if (!dist)
+ dist = malloc(N * sizeof(unsigned int));
+ if (!marked)
+ marked = malloc(N * sizeof(unsigned int));
+ if (!preds)
+ preds = malloc(N * sizeof(unsigned int *));
+ if (!nj)
+ nj = malloc(N * sizeof(unsigned int));
+ if (!delta)
+ delta = malloc(N * sizeof(double));
+ if (!cB)
+ cB = malloc(N * sizeof(double));
+
+ for (i=0; i<N; i++){
+ cB[i] = 0;
+ preds[i] = NULL;
+ }
+
+ for (j=0; j<N; j++){
+ for(i=0; i<N; i++){
+ dist[i] = N;
+ if (preds[i] == NULL){
+ preds[i] = malloc(sizeof(unsigned int));
+ }
+ preds[i][0] = 0; /* The list of predecessors is now empty! */
+
+ nj[i] = 0;
+ delta[i]= 0;
+ }
+ dist[j] = 0;
+ nj[j] = 1;
+ marked[0] = j;
+ d = 0;
+ n = 0;
+ nd = 1;
+ ndp = 0;
+ while (d<N && nd > 0){
+ for(i = n; i< n+nd; i ++){
+ cur_node = marked[i];
+ for (k=r_slap[cur_node]; k<r_slap[cur_node +1] ; k++){
+ w = J_slap[k];
+ if (!active[k])
+ /* discard inactive links */
+ continue;
+
+ if ( dist[w] == d+1){
+ add_predecessor((unsigned int **)(preds + w), cur_node);
+ nj[w] += nj[cur_node];
+ }
+ if ( dist[w] == N){
+ dist[w] = d+1;
+ marked[n + nd + ndp] = w;
+ add_predecessor(preds + w, cur_node);
+ ndp +=1;
+ nj[w] += nj[cur_node];
+ }
+ }
+ }
+ n = n + nd;
+ nd = ndp;
+ ndp = 0;
+ d += 1;
+ }
+ for (k= n-1; k>=1; k--){
+ w = marked[k];
+ for (idx=1; idx <= preds[w][0]; idx ++ ){
+ i = preds[w][idx];
+ val = 1.0 * nj[i] / nj[w] * (1 + delta[w]);
+ delta[i] += val;
+ /* Now we should update the betweenness of the edge (i,w) in
+ the appropriate position of the vector edge_bet*/
+ find_neigh_in_Jslap(J_slap, r_slap, N, i, w, &edge_pos);
+ edge_bet[edge_pos] += val;
+ find_neigh_in_Jslap(J_slap, r_slap, N, w, i, &edge_pos);
+ edge_bet[edge_pos] += val;
+ }
+ cB[w] += delta[w];
+ }
+ }
+ //free(marked);
+ return cB;
+}
+
+
+
+/**
+ *
+ * Depth-First search on the node i....
+ *
+ */
+int dfs_active(unsigned int i, unsigned int *J_slap, unsigned int *r_slap,
+ unsigned int N, unsigned int nc, unsigned int *ic, unsigned int *f,
+ char reset, char *active){
+
+ static unsigned int time;
+ unsigned int j, s;
+
+ if(reset){
+ time = 0;
+ }
+
+ ic[i] = nc;
+ s = 1;
+ time += 1;
+
+ for(j=r_slap[i]; j<r_slap[i+1]; j++){
+ if (ic[J_slap[j]] == 0 && active[j]){
+ s += dfs_active(J_slap[j], J_slap, r_slap, N, nc, ic, f, 0, active);
+ }
+ }
+ time += 1;
+ f[i] = time;
+ return s;
+}
+
+/**
+ *
+ * Find all the components of the given graph
+ *
+ */
+
+int components(unsigned int *J_slap, unsigned int *r_slap, unsigned int N,
+ unsigned int *ic, unsigned int *f, unsigned int *sizes,
+ char *active){
+
+ unsigned int nc, s;
+ unsigned int i;
+
+
+ for(i=0; i<N; i++){
+ ic[i] = 0;
+ f[i] = 0;
+ }
+ nc = 0;
+ for(i=0; i<N; i++){
+ while( i<N && ic[i] != 0)
+ i += 1;
+ if (i == N)
+ break;
+ nc += 1;
+ s = dfs_active(i, J_slap, r_slap, N, nc, ic, f, 1, active);
+ sizes[nc] = s;
+ }
+ return nc;
+}
+
+
+/**
+ * find the position of the element in v with maximal value. If there
+ * are more than one element with the same value, return the position
+ * of the last one found. In order to introduce randomness, the search
+ * starts from a position sampled uniformly at random
+ *
+ */
+unsigned int find_pos_max_rand(double *v, unsigned int K, char *active){
+
+ unsigned int i;
+ double max;
+ unsigned int base, pos_max;
+
+ base = rand() % K;
+ while(! active[base] )
+ base = (base + 1) % K;
+ max = v[base];
+ pos_max = base;
+
+ for(i=base; i<base + K; i++){
+ if (v[i % K] >= max && active[i % K]){
+ max = v[i % K];
+ pos_max = i % K;
+ }
+ }
+ return pos_max;
+}
+
+
+unsigned int find_pos_max(double *v, unsigned int K, char *active){
+
+ unsigned int i;
+ double max;
+ unsigned int base, pos_max;
+
+ base = 0;
+ while(! active[base] )
+ base = (base + 1) % K;
+ max = v[base];
+ pos_max = base;
+
+ for(i=base; i<base + K; i++){
+ if (v[i % K] >= max && active[i % K]){
+ max = v[i % K];
+ pos_max = i % K;
+ }
+ }
+ return pos_max;
+}
+
+
+/* This function compute the modularity function of the partition
+ 'part'...*/
+double compute_modularity(unsigned int *J_slap, unsigned int *r_slap, unsigned int N,
+ unsigned int *part, unsigned int nc){
+ static double *e, *a;
+
+ unsigned int i, j, n, K;
+ unsigned int ci, cj;
+ double Q;
+
+ if(!e)
+ e = malloc((N+1) * sizeof(double));
+ if(!a)
+ a = malloc((N+1) * sizeof(double));
+
+ memset(e, 0, (N+1) * sizeof(double));
+ memset(a, 0, (N+1) * sizeof(double));
+
+ K = r_slap[N];
+
+ for (i=0; i<N; i++){
+ ci = part[i];
+ a[ci] += (r_slap[i+1] - r_slap[i]);
+ for(j=r_slap[i]; j< r_slap[i+1]; j++){
+ cj = part[J_slap[j]];
+ if (ci == cj){
+ e[ci] += 1;
+ }
+ }
+ }
+
+ Q = 0.0;
+ for (n=1; n<=nc; n++){
+ Q += 1.0 * e[n]/(1.0 * K ) - pow(1.0 * a[n]/K, 2);
+ }
+ return Q;
+}
+
+
+unsigned int* girvan_newman(unsigned int *J_slap, unsigned int *r_slap, unsigned int N){
+
+ unsigned int K, nc, pos;
+ double *edge_bet = NULL;
+ char *active = NULL;
+ double Q, Q_max;
+
+ unsigned int *ic, *f, *sizes;
+ unsigned int *best_part;
+
+ int i, j, nc_max;
+
+ K = r_slap[N];
+
+ ic = malloc((N) * sizeof(unsigned int));
+ f = malloc(N * sizeof(unsigned int));
+ sizes = malloc((N+1) * sizeof(unsigned int));
+ best_part = malloc(N * sizeof(unsigned int));
+
+
+ /* We initialise the vector "active" which idicates active edges */
+
+ active = malloc(K * sizeof(char));
+ for (i=0; i<K; i++){
+ active[i] = 1;
+ }
+
+ edge_bet = malloc(K * sizeof(double));
+ nc_max = 0;
+ Q_max = -1000;
+
+ for(j=0; j<K; j++){
+ memset(edge_bet, 0, K * sizeof(double));
+ /* compute edge betweenness */
+ compute_bet_dependency_active(N, J_slap, r_slap, edge_bet, active);
+ /* find edge with maximal betweenness... */
+ pos = find_pos_max_rand(edge_bet, K, active);
+ /* and knock it down */
+ active[pos] = 0;
+ /* compute connected components */
+ nc = components(J_slap, r_slap, N, ic, f, sizes, active);
+ /* compute the modularity of the partition induced by components */
+ Q = compute_modularity(J_slap, r_slap, N, ic, nc);
+ fprintf(stderr, "%d %g\n", nc, Q);
+ /* if Q is maximal, save the current partition */
+ if (j > 0){
+ if (Q > Q_max){
+ Q_max = Q;
+ nc_max = nc;
+ memcpy (best_part, ic, N * sizeof(unsigned int));
+ }
+ }
+ else{
+ Q_max = Q;
+ memcpy(best_part, ic, N*sizeof(unsigned int));
+ }
+ }
+ /* Return the best partition */
+ fprintf(stdout, "### nc: %d Q_max: %g\n", nc_max, Q_max);
+ free(f);
+ free(ic);
+ free(sizes);
+ free(edge_bet);
+ free(active);
+ return best_part;
+}
+
+
+
+void dump_partition(unsigned int *p, unsigned int N){
+
+ unsigned int i;
+ for(i=0; i<N; i++){
+ fprintf(stdout, "%d %d\n", i, p[i]);
+ }
+}
+
+
+int main(int argc, char *argv[]){
+
+
+ unsigned int *J_slap=NULL, *r_slap=NULL;
+ unsigned int K, N;
+ FILE *filein;
+ unsigned int *part;
+
+
+ if(argc < 2){
+ usage(argv);
+ exit(1);
+ }
+
+
+ srand(time(NULL));
+
+ if (!strcmp(argv[1], "-")){
+ /* take the input from STDIN */
+ filein = stdin;
+ }
+ else {
+ filein = openfile_or_exit(argv[1], "r", 2);
+ }
+
+ read_slap(filein, &K, &N, &J_slap, &r_slap);
+ sort_neighbours(J_slap, r_slap, N);
+ fclose(filein);
+
+ part = girvan_newman(J_slap, r_slap, N);
+ dump_partition(part, N);
+ free(J_slap);
+ free(r_slap);
+ free(part);
+
+}