summaryrefslogtreecommitdiff
path: root/src/f3m/f3m.c
diff options
context:
space:
mode:
authorKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
committerKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
commit3aee2fd43e3059a699af2b63c6f2395e5a55e515 (patch)
tree58c95505a0906ed9cfa694f9dbd319403fd8f01d /src/f3m/f3m.c
First commit on github -- NetBunch 1.0
Diffstat (limited to 'src/f3m/f3m.c')
-rw-r--r--src/f3m/f3m.c657
1 files changed, 657 insertions, 0 deletions
diff --git a/src/f3m/f3m.c b/src/f3m/f3m.c
new file mode 100644
index 0000000..cfe1146
--- /dev/null
+++ b/src/f3m/f3m.c
@@ -0,0 +1,657 @@
+/**
+ * This program is free software: you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation, either version 3 of the
+ * License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see
+ * <http://www.gnu.org/licenses/>.
+ *
+ * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk>
+ *
+ * This file is part of NetBunch, a package for complex network
+ * analysis and modelling. For more information please visit:
+ *
+ * http://www.complex-networks.net/
+ *
+ * If you use this software, please add a reference to
+ *
+ * V. Latora, V. Nicosia, G. Russo
+ * "Complex Networks: Principles, Methods and Applications"
+ * Cambridge University Press (2017)
+ * ISBN: 9781107103184
+ *
+ ***********************************************************************
+ *
+ * Enumerate all the three-nodes subgraphs in a directed network, and
+ * compute the significance of their number with respect to the
+ * corresponding configuration model ensemble.
+ *
+ * References:
+ *
+ * [1] R. Milo et al. "Network Motifs: Simple Building Blocks of
+ * Complex Networks". Science 298 (2002), 824-827.
+ *
+ * [2] R. Milo et al. "Superfamilies of evolved and designed
+ * networks." Science 303 (2004), 1538-1542
+ *
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <string.h>
+#include <time.h>
+#include <math.h>
+
+#include "utils.h"
+
+
+
+void usage(char *argv[]){
+
+ printf("********************************************************************\n"
+ "** **\n"
+ "** -*- f3m -*- **\n"
+ "** **\n"
+ "** Count all the 3-node subgraphs of a directed graph given as **\n"
+ "** input, and compute the relevance (z-score) of each motif **\n"
+ "** with respect to the corresponding configuration model graph **\n"
+ "** ensemble. **\n"
+ "** **\n"
+ "** The file 'graph_in' contains the edge list of the graph. **\n"
+ "** **\n"
+ "** The program prints on STDOUT one line for each of the 13 **\n"
+ "** motifs, in the format **\n"
+ "** **\n"
+ "** motif count mean_rnd std_rnd z-score **\n"
+ "** **\n"
+ "** where 'motif' is the motif number (an integer between 1 and **\n"
+ "** 13), 'count' is the number of subgraphs of that type found **\n"
+ "** in 'graph_in', 'mean_rnd' is the average number of those **\n"
+ "** subgraphs found in the randomised realisations of the graph, **\n"
+ "** 'std_rnd' is the standard deviation associated to 'avg_rnd', **\n"
+ "** and 'z-score' is the normalised deviation of 'count' from **\n"
+ "** 'mean_rnd'. **\n"
+ "** **\n"
+ "** If the (optional) parameter 'num_random' is provided, use **\n"
+ "** that number of random realisations to compute the z-score. **\n"
+ "** **\n"
+ "********************************************************************\n"
+ " This is Free Software - You can use and distribute it under \n"
+ " the terms of the GNU General Public License, version 3 or later\n\n"
+ " Please visit http://www.complex-networks.net for more information\n\n"
+ " (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n"
+ "********************************************************************\n\n"
+ );
+ printf("Usage: %s <graph_in> [<num_random>]\n", argv[0]);
+}
+
+
+
+
+
+
+#define MIN(x, y) ((x) < (y) ? (x) : (y))
+
+
+typedef struct{
+ unsigned int N;
+ unsigned int K;
+ unsigned int *J_slap;
+ unsigned int *r_slap;
+} graph_t;
+
+
+typedef struct{
+ double f_count_real[13];
+ int num_rnd;
+ double **f_count_rnd;
+} mstats_t;
+
+
+char perm12[3][3] = {{0, 1, 0},
+ {1, 0, 0},
+ {0, 0, 1}};
+
+char perm13[3][3] = {{0, 0, 1},
+ {0, 1, 0},
+ {1, 0, 0}};
+
+char perm23[3][3] = {{1, 0, 0},
+ {0, 0, 1},
+ {0, 1, 0}};
+
+
+
+void shuffle_list(unsigned int *v, unsigned int K){
+
+ int i, pos;
+
+ for(i=K-1; i>=0; i--){
+ pos = rand() % K;
+ if (pos != i){
+ v[i] ^= v[pos];
+ v[pos] ^= v[i];
+ v[i] ^= v[pos];
+ }
+ }
+}
+
+int is_simple_graph(unsigned int *J_slap, unsigned int *r_slap, unsigned int K,
+ unsigned int N){
+
+ int i, j;
+ for(i=0; i<N; i++){
+ for(j=r_slap[i]; j<r_slap[i+1]; j++){
+ if (J_slap[j] == i) /* If there is a self-loop....*/
+ return 0;
+ if (j > r_slap[i] && J_slap[j] == J_slap[j-1]) /* or a double edge... */
+ return 0;
+ }
+ }
+ return 1;
+}
+
+int is_loop_free(unsigned int *J_slap, unsigned int *r_slap, unsigned int K,
+ unsigned int N){
+
+ int i, j;
+ for(i=0; i<N; i++){
+ for(j=r_slap[i]; j<r_slap[i+1]; j++){
+ if (J_slap[j] == i) /* There is a self-loop....*/
+ return 0;
+ }
+ }
+ return 1;
+}
+
+
+
+unsigned int* sample_conf_model_smart(unsigned int *J_slap, unsigned int *r_slap,
+ unsigned int K, unsigned int N){
+
+ unsigned int *new_J;
+
+ new_J = malloc( K * sizeof(unsigned int));
+
+ memcpy(new_J, J_slap, K *sizeof(unsigned int));
+
+ while(1){
+ shuffle_list(new_J, K);
+ sort_neighbours(new_J, r_slap, N);
+ if(is_loop_free(new_J, r_slap, K, N))
+ break;
+ }
+ return new_J;
+}
+
+
+
+void apply_perm_3(char m[3][3], char p[3][3]){
+
+ char res[3][3];
+
+ int i, j, k;
+ for (i=0; i<3; i++){
+ for(j=0; j<3; j++){
+ res[i][j] = 0;
+ for(k=0; k<3; k++){
+ res[i][j] += p[i][k] * m[k][j];
+ }
+ }
+ }
+
+ for (i=0; i<3; i++){
+ for(j=0; j<3; j++){
+ m[i][j] = 0;
+ for(k=0; k<3; k++){
+ m[i][j] += res[i][k] * p[k][j];
+ }
+ }
+ }
+
+}
+
+int row_value(char r[3]){ /* The "value" of a row of bits is
+ equal to the binary representation
+ of the row, in big-endian (i.e.,
+ LSB is r[0], MSB is r[2])*/
+
+ return r[0] + (r[1]<<1) + (r[2]<<2);
+}
+
+int matrix_value(char m[3][3]){ /* The value of a matrix of
+ bits is equal to the binary
+ representation of the
+ matrix, in big endian,
+ starting from the first row
+ (LSB is m[0][0], MSB is
+ m[2][2])*/
+
+ return row_value(m[0]) + (row_value(m[1])<<3) + (row_value(m[2])<<6);
+}
+
+
+void permute_matrix_3(char m[3][3], int n1, int n2){
+
+ int perm;
+
+ if (n1 == n2){
+ return;
+ }
+ if (n1 > n2){
+ n1 ^= n2;
+ n2 ^= n1;
+ n1 ^= n2;
+ }
+
+ perm = n1 + (n2<<2);
+
+ switch(perm){
+ case (1 + (2<<2)): /* permute 1 with 2 */
+ apply_perm_3(m, perm12);
+ break;
+ case (1 + (3<<2)): /* permute 1 with 3 */
+ apply_perm_3(m, perm13);
+ break;
+ case (2 + (3<<2)): /* permute 2 with 3 */
+ apply_perm_3(m, perm23);
+ break;
+ }
+}
+
+
+
+/* Load the input graph. We construct two versions of the graph,
+ i.e. the directed versions G_out ( containing the list of
+ out-neighbours of each node) and the underlying undirected graph
+ G_u
+
+ N.B.: This is quite inefficient at the moment, since it reads the
+ file twice, and could be replaced by one call to read_ij and two
+ appropriate calls to convert_ij2slap.... */
+
+void load_graph(FILE *fin, graph_t *G_u, graph_t *G_out){
+
+ /*FIXME!!!! WE CANNOT REWIND THE STANDARD OUTPUT !!!!! */
+ read_slap(fin, &(G_u->K), &(G_u->N), &(G_u->J_slap), &(G_u->r_slap));
+ sort_neighbours(G_u->J_slap, G_u->r_slap, G_u->N);
+ rewind(fin);
+ read_slap_dir(fin, &(G_out->K), &(G_out->N), &(G_out->J_slap), &(G_out->r_slap));
+ sort_neighbours(G_out->J_slap, G_out->r_slap, G_out->N);
+ rewind(fin);
+
+}
+
+
+void dump_matrix_3(char m[3][3]){
+
+ int i, j;
+
+ for(i=0; i<3; i++){
+ for(j=0; j<3; j++){
+ printf("%d ", m[i][j]);
+ }
+ printf("\n");
+ }
+}
+
+
+int motif_number(char m[3][3]){
+
+ char m0[3][3];
+ char m1[3][3];
+ char m2[3][3];
+ char m3[3][3];
+
+ int v, v0, v1, v2, v3, v4, v5;
+ int i,j;
+
+ for(i=0; i<3; i++){
+ for(j=0; j<3; j++){
+ m0[i][j] = m[i][j];
+ }
+ }
+
+ if (row_value(m[0]) == 0){
+ permute_matrix_3(m0, 1, 2);
+ }
+ if (row_value(m0[1]) == 0){
+ permute_matrix_3(m0, 2, 3);
+ }
+
+
+ for(i=0; i<3; i++){
+ for(j=0; j<3; j++){
+ m1[i][j] = m0[i][j];
+ m2[i][j] = m0[i][j];
+ m3[i][j] = m0[i][j];
+ }
+ }
+
+ /* We consider here all the 6 possible permutations... */
+
+ /* {0, 1, 2} */
+ v0 = matrix_value(m0);
+ /* {1, 0, 2} */
+ permute_matrix_3(m1, 1, 2);
+ v1 = matrix_value(m1);
+ /* {2, 1, 0} */
+ permute_matrix_3(m2, 1, 3);
+ v2 = matrix_value(m2);
+ /* {0, 2, 1} */
+ permute_matrix_3(m3, 2, 3);
+ v3 = matrix_value(m3);
+ /* {1, 2, 0} */
+ permute_matrix_3(m2, 1, 2);
+ v4 = matrix_value(m2);
+ /* {2, 0, 1} */
+ permute_matrix_3(m3, 1, 2);
+ v5 = matrix_value(m3);
+
+ v = MIN (MIN( MIN( MIN( MIN( v0, v1), v2), v3), v4), v5);
+
+ switch(v){
+ case 6:
+ return 0;
+ case 12:
+ return 1;
+ case 14:
+ return 2;
+ case 36:
+ return 3;
+ case 38:
+ return 4;
+ case 46:
+ return 5;
+ case 74:
+ return 6;
+ case 78:
+ return 7;
+ case 98:
+ return 8;
+ case 102:
+ return 9;
+ case 108:
+ return 10;
+ case 110:
+ return 11;
+ case 238:
+ return 12;
+ default:
+ fprintf(stderr, "No motif with number %d! Exiting\n", v);
+ dump_matrix_3(m);
+ exit(5);
+ }
+}
+
+int get_motif_3(int n1, int n2, int n3, graph_t *G_out){
+
+ char m[3][3];
+ unsigned int n[3] = {n1, n2, n3};
+
+ int i, j, v;
+
+ for(i=0; i<3; i++){
+ for (j=0; j<3; j++){
+ if (is_neigh(G_out->J_slap, G_out->r_slap, G_out->N,
+ n[i], n[j])){
+ m[i][j] = 1;
+ }
+ else{
+ m[i][j] = 0;
+ }
+ }
+ }
+ v = motif_number(m);
+ return v;
+}
+
+
+
+void find_subgraphs_3(graph_t *G_u, graph_t *G_out, double *f_cnt){
+
+ int i, j, k, n1, n2;
+ int val;
+
+ for (i=0; i<G_u->N; i++){
+ for(n1 = G_u->r_slap[i]; n1<G_u->r_slap[i+1]; n1++){
+ /* j is a first-neighbour of i in G_u */
+ j = G_u->J_slap[n1];
+ /* avoid multiple entries in the J_slap vector */
+ if (n1 > G_u->r_slap[i] && j == G_u->J_slap[n1-1])
+ continue;
+ for(n2 = n1+1; n2 < G_u->r_slap[i+1]; n2++){
+ /* and k is another first neighbour of i in G_u */
+ k = G_u->J_slap[n2];
+ /* avoid multiple entries in the J_slap vector */
+ if (n2 > n1+1 && k == G_u->J_slap[n2-1])
+ continue;
+ /* now, if j and k are connected by an edge, we consider this
+ triangle only if i<j<k (in order to avoid multiple counts).
+ Otherwise, if i-j-k is an open triad, we have to consider
+ it now, because there is no other possibility to discover
+ it */
+ if((is_neigh(G_u->J_slap, G_u->r_slap, G_u->N, j, k) &&
+ (j < i || k < j || k < i)) || (j==k))
+ continue;
+ val = get_motif_3(i, j, k, G_out);
+ f_cnt[val] +=1;
+ }
+ }
+ }
+
+}
+
+void init_graph(graph_t *G1){
+ G1->J_slap = G1->r_slap = NULL;
+}
+
+void init_stats(mstats_t *st, int n_rand){
+ int i;
+
+ st->f_count_rnd = malloc(n_rand * sizeof(double*));
+
+ st->num_rnd = n_rand;
+
+ for(i=0; i<13; i++){
+ st->f_count_real[i] = 0;
+ }
+
+ for(i=0; i<n_rand; i++){
+ st->f_count_rnd[i] = malloc(13 * sizeof(double));
+ memset(st->f_count_rnd[i], 0, 13 * sizeof(double));
+ }
+}
+
+
+void compute_rnd_st_mean_std(mstats_t *st, double *mean, double *std){
+
+ double sum[13], sum2[13];
+ double val, n;
+
+ int i, j;
+
+
+ n = st->num_rnd;
+
+ for (i=0; i<13; i++){
+ sum[i] = sum2[i] = 0;
+ }
+
+ if (n == 0)
+ return;
+
+ for(i=0; i<n; i++){
+ for(j=0; j<13; j++){
+ val = st->f_count_rnd[i][j];
+ sum[j] += val;
+ sum2[j] += val*val;
+ }
+ }
+
+ for(i=0; i<13; i++){
+ mean[i] = sum[i] / n;
+ if (sum2[i] > 0)
+ std[i] = sqrt(sum2[i] * 1.0/(n-1) - 1.0/( n * (n-1)) * sum[i]*sum[i]);
+ else
+ std[i] = 0.0;
+ }
+}
+
+
+
+
+
+void dump_stats(mstats_t *st){
+
+ int i;
+ double v_mean[13], v_std[13], x;
+
+ memset(v_mean, 0, 13 * sizeof(double));
+ memset(v_std, 0, 13 * sizeof(double));
+
+ compute_rnd_st_mean_std(st, v_mean, v_std);
+ for(i=0; i<13; i++){
+ x = st->f_count_real[i];
+ if (v_std[i] > 0)
+ printf("%-2d %12.0f %15.2f %10.3f %+10.3f\n", i+1, x,
+ v_mean[i], v_std[i], 1.0 * (x - v_mean[i])/v_std[i] );
+ else
+ printf("%-2d %12.0f %15.2f %10.3f %+10.3f\n", i+1, x,
+ v_mean[i], v_std[i], 0.0);
+
+ }
+}
+
+void randomise_graph(graph_t *G_out, graph_t *RNDG_out, graph_t *RNDG_u){
+
+ static unsigned int *I, *J;
+ static unsigned int I_size, J_size;
+ unsigned int *tmp;
+
+ if (!I || I_size < 2*G_out->K){
+ tmp = realloc(I, G_out -> K * 2 * sizeof(unsigned int));
+ VALID_PTR_OR_EXIT(tmp, 3);
+ I = tmp;
+ I_size = 2*G_out->K;
+ }
+
+
+ if (!J || J_size < 2*G_out->K){
+ tmp = realloc(J, G_out -> K * 2 * sizeof(unsigned int));
+ VALID_PTR_OR_EXIT(tmp, 3);
+ J = tmp;
+ J_size = 2*G_out->K;
+ }
+
+ if (RNDG_out->J_slap){
+ free(RNDG_out->J_slap);
+ RNDG_out->J_slap = NULL;
+ }
+
+
+ RNDG_out->J_slap = sample_conf_model_smart(G_out->J_slap, G_out->r_slap, G_out->K, G_out->N);
+
+ tmp = realloc(RNDG_out->r_slap, (G_out->N + 1) * sizeof(unsigned int));
+ VALID_PTR_OR_EXIT(tmp, 19);
+ RNDG_out->r_slap = tmp;
+ memcpy(RNDG_out->r_slap, G_out->r_slap, (G_out->N + 1) * sizeof(unsigned int));
+ RNDG_out->N = G_out->N;
+ RNDG_out->K = G_out->K;
+
+
+ convert_slap2ij(RNDG_out->J_slap, RNDG_out->r_slap, RNDG_out->N, I, J);
+
+ /* copy J at the end of I */
+ memcpy(&(I[G_out->K]), J, G_out->K * sizeof(unsigned int));
+ /* copy I at the end of J */
+ memcpy(&(J[G_out->K]), I, G_out->K * sizeof(unsigned int));
+
+
+ RNDG_u->N = convert_ij2slap(I, J, 2*G_out->K, & (RNDG_u->r_slap), &(RNDG_u->J_slap));
+
+ RNDG_u->K = 2 * G_out->K;
+
+ sort_neighbours(RNDG_u->J_slap, RNDG_u->r_slap, RNDG_u->N);
+ sort_neighbours(RNDG_out->J_slap, RNDG_out->r_slap, RNDG_out->N);
+
+ if (!is_loop_free(RNDG_u->J_slap, RNDG_u->r_slap, RNDG_u->K, RNDG_u->N)){
+ fprintf(stderr, "Error!!!! The undirected version of the graph is not loop-free!!!!\n");
+ exit(23);
+ }
+
+}
+
+
+int main(int argc, char *argv[]){
+
+ graph_t G_u, G_out, RNDG_u, RNDG_out;
+ mstats_t st;
+ FILE *filein;
+ unsigned int nr;
+
+ int i;
+
+ if(argc < 2){
+ usage(argv);
+ exit(1);
+ }
+ filein = openfile_or_exit(argv[1], "r", 2);
+
+ if (argc > 2){
+ nr = atoi(argv[2]);
+ }
+ else{
+ nr = 0;
+ }
+
+ init_stats(&st, nr);
+ init_graph(&G_u);
+ init_graph(&G_out);
+
+ load_graph(filein, &G_u, &G_out);
+
+ fclose(filein);
+
+ find_subgraphs_3(&G_u, &G_out, st.f_count_real);
+
+ srand(time(NULL));
+
+ /* Now we create n_r random networks with the same degree
+ distribution, and we perform motifs analysis on each of them */
+
+ init_graph(&RNDG_out);
+ init_graph(&RNDG_u);
+
+ for(i=0; i<nr; i++){
+ /* Create the random graph */
+ randomise_graph(&G_out, &RNDG_out, &RNDG_u);
+ /* call find_subgraphs_3 in it */
+ find_subgraphs_3(&RNDG_u, &RNDG_out, st.f_count_rnd[i]);
+ //show_progress(stderr, "Randomised networks: ", i+1, nr);
+ }
+ //fprintf(stderr,"\n");
+
+ /* Now we should print the results on output */
+
+ dump_stats(&st);
+
+ free(G_u.J_slap);
+ free(G_u.r_slap);
+ free(G_out.J_slap);
+ free(G_out.r_slap);
+
+ free(RNDG_u.J_slap);
+ free(RNDG_u.r_slap);
+ free(RNDG_out.J_slap);
+ free(RNDG_out.r_slap);
+
+ return 0;
+}