summaryrefslogtreecommitdiff
path: root/doc/bb_fitness.1
diff options
context:
space:
mode:
authorKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
committerKatolaZ <katolaz@freaknet.org>2017-09-27 15:06:31 +0100
commit3aee2fd43e3059a699af2b63c6f2395e5a55e515 (patch)
tree58c95505a0906ed9cfa694f9dbd319403fd8f01d /doc/bb_fitness.1
First commit on github -- NetBunch 1.0
Diffstat (limited to 'doc/bb_fitness.1')
-rw-r--r--doc/bb_fitness.195
1 files changed, 95 insertions, 0 deletions
diff --git a/doc/bb_fitness.1 b/doc/bb_fitness.1
new file mode 100644
index 0000000..1aa28c5
--- /dev/null
+++ b/doc/bb_fitness.1
@@ -0,0 +1,95 @@
+.\" generated with Ronn/v0.7.3
+.\" http://github.com/rtomayko/ronn/tree/0.7.3
+.
+.TH "BB_FITNESS" "1" "September 2017" "www.complex-networks.net" "www.complex-networks.net"
+.
+.SH "NAME"
+\fBbb_fitness\fR \- Grow a random graph with the fitness model
+.
+.SH "SYNOPSIS"
+\fBbb_fitness\fR \fIN\fR \fIm\fR \fIn0\fR [SHOW]
+.
+.SH "DESCRIPTION"
+\fBbb_fitness\fR grows an undirected random scale\-free graph with \fIN\fR nodes using the fitness model proposed by Bianconi and Barabasi\. The initial network is a clique of \fIn0\fR nodes, and each new node creates \fIm\fR new edges\. The probability that a new node create an edge to node \fBj\fR is proportional to
+.
+.IP "" 4
+.
+.nf
+
+ a_j * k_j
+.
+.fi
+.
+.IP "" 0
+.
+.P
+where \fBa_j\fR is the attractiveness (fitness) of node \fBj\fR\. The values of node attractiveness are sampled uniformly in the interval [0,1]\.
+.
+.SH "PARAMETERS"
+.
+.TP
+\fIN\fR
+Number of nodes of the final graph\.
+.
+.TP
+\fIm\fR
+Number of edges created by each new node\.
+.
+.TP
+\fIn0\fR
+Number of nodes in the initial (seed) graph\.
+.
+.TP
+SHOW
+If the fourth parameter is equal to \fBSHOW\fR, the values of node attractiveness are printed on STDERR\.
+.
+.SH "OUTPUT"
+\fBbb_fitness\fR prints on STDOUT the edge list of the final graph\.
+.
+.SH "EXAMPLES"
+The following command:
+.
+.IP "" 4
+.
+.nf
+
+ $ bb_fitness 10000 3 4 > bb_fitness_10000_3_4\.txt
+.
+.fi
+.
+.IP "" 0
+.
+.P
+uses the fitness model to create a random graph with \fIN=10000\fR nodes, where each new node creates \fIm=3\fR new edges and the initial seed network is a ring of \fIn0=5\fR nodes\. The edge list of the resulting graph is saved in the file \fBbb_fitness_10000_3_4\.txt\fR (notice the redirection operator \fB>\fR)\. The command:
+.
+.IP "" 4
+.
+.nf
+
+ $ bb_fitness 10000 3 4 SHOW > bb_fitness_10000_3_4\.txt 2> bb_fitness_10000_3_4\.txt_fitness
+.
+.fi
+.
+.IP "" 0
+.
+.P
+will do the same as above, but it will additionally save the values of node fitness in the file \fBbb_fitness_10000_3_4\.txt_fitness\fR (notice the redirection operator \fB2>\fR, that redirects the STDERR to the specified file)\.
+.
+.SH "SEE ALSO"
+ba(1), dms(1)
+.
+.SH "REFERENCES"
+.
+.IP "\(bu" 4
+G\. Bianconi, A\.\-L\. Barabasi, " Competition and multiscaling in evolving networks"\. EPL\-Europhys\. Lett\. 54 (2001), 436\.
+.
+.IP "\(bu" 4
+V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Chapter 6, Cambridge University Press (2017)
+.
+.IP "\(bu" 4
+V\. Latora, V\. Nicosia, G\. Russo, "Complex Networks: Principles, Methods and Applications", Appendix 13, Cambridge University Press (2017)
+.
+.IP "" 0
+.
+.SH "AUTHORS"
+(c) Vincenzo \'KatolaZ\' Nicosia 2009\-2017 \fB<v\.nicosia@qmul\.ac\.uk>\fR\.