diff options
author | KatolaZ <katolaz@yahoo.it> | 2015-05-12 12:01:50 +0100 |
---|---|---|
committer | KatolaZ <katolaz@yahoo.it> | 2015-05-12 12:01:50 +0100 |
commit | 815c998aa757969edd25b34a8eefa8f5be4d4097 (patch) | |
tree | 2462e4ca475525c9da6fea165b43b0983e608878 /python | |
parent | 29cc00c2d4dd86d6649d4ddd676601ecae943b6d (diff) |
A better solution to remove the last few full matrices around (all of
them were in the "layer" class...)
Diffstat (limited to 'python')
-rw-r--r-- | python/multired.py | 13 |
1 files changed, 0 insertions, 13 deletions
diff --git a/python/multired.py b/python/multired.py index f885c12..06fbc79 100644 --- a/python/multired.py +++ b/python/multired.py @@ -123,13 +123,8 @@ class layer: elif matrix != None: self.adj_matr = copy.copy(matrix) self.N, _x = matrix.shape - #K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) - #D = np.diag(np.diag(K)) K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) - #K = self.adj_matr.sum(0) - #D = csr_matrix((self.N, self.N)) - #D.setdiag(eye(self.N) * K.transpose()) self.laplacian = csr_matrix(D - self.adj_matr) K = self.laplacian.diagonal().sum() self.resc_laplacian = csr_matrix(self.laplacian / K) @@ -140,11 +135,8 @@ class layer: self.N = N self.adj_matr = csr_matrix((self._ww, (self._ii, self._jj)), shape=(self.N, self.N)) self.adj_matr = self.adj_matr + self.adj_matr.transpose() - #K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) - #D = np.diag(np.diag(K)) K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) - #D.setdiag(eye(self.N) * K.transpose()) self.laplacian = csr_matrix(D - self.adj_matr) K = self.laplacian.diagonal().sum() self.resc_laplacian = csr_matrix(self.laplacian / K) @@ -179,13 +171,8 @@ class layer: self.adj_matr = self.adj_matr + other_layer.adj_matr else: self.adj_matr = copy.copy(other_layer.adj_matr) - #K = np.multiply(self.adj_matr.sum(0), np.ones((self.N,self.N))) - #D = np.diag(np.diag(K)) K = self.adj_matr.sum(0).reshape((1, self.N)).tolist()[0] D = csr_matrix((K, (range(self.N), range(self.N)) ), shape=(self.N, self.N)) - #K = self.adj_matr.sum(0) - #D = csr_matrix((self.N, self.N)) - #D.setdiag(eye(self.N) * K. transpose()) self.laplacian = csr_matrix(D - self.adj_matr) K = self.laplacian.diagonal().sum() self.resc_laplacian = csr_matrix(self.laplacian / K) |