1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
# This file is part of MAMMULT: Metrics And Models for Multilayer Networks
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or (at
# your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
####
##
## Get two rankings and a pairing, and compute the corresponding
## Spearman's rho rank correlation coefficient
##
##
##
##
import sys
import random
import math
#import scipy.stats
##
## Compute the constant C of the Spearman's rho correlation coefficient in the draft
##
def compute_C(rank1, rank2):
N = len(rank1)
[mu1, mu2] = [1.0 * sum(x.values()) / len(x.values()) for x in [rank1, rank2]]
[sum1, sum2] = [1.0 * sum(x.values()) for x in [rank1, rank2]]
C = N * mu1 * mu2 - mu2 * sum1 - mu1 * sum2
#print mu1, mu2, sum1, sum2, C
return C
##
## Compute the constant D of the Spearman's rho correlation coefficient in the draft
##
def compute_D(rank1, rank2):
[mu1, mu2] = [1.0 * sum(x.values()) / len(x.values()) for x in [rank1, rank2]]
s1 = sum([math.pow((x-mu1), 2) for x in rank1.values()])
s2 = sum([math.pow((x-mu2), 2) for x in rank2.values()])
D = math.sqrt(s1 * s2)
return D
def compute_rho(rank1, rank2, pairing, C, D):
rho = 0
for s,t in pairing:
rho += rank1[s] * rank2[t]
rho = (rho + C) / D
return rho
if len(sys.argv) < 3:
print "Usage: %s <rank1> <rank2> [<pairing>]" % sys.argv[0]
sys.exit(1)
rank1 = {}
rank2 = {}
lines = open(sys.argv[1], "r").readlines()
i = 0
for l in lines:
if l[0] == "#" or l.strip(" \n").split(" ") == []: ## Strip comments and empty lines
continue
r = [float(x) if "." in x or "e" in x else int(x) for x in l.strip(" \n").split(" ")][0]
rank1[i] = r
i += 1
lines = open(sys.argv[2], "r").readlines()
i = 0
for l in lines:
if l[0] == "#" or l.strip(" \n").split(" ") == []: ## Strip comments and empty lines
continue
r = [float(x) if "." in x or "e" in x else int(x) for x in l.strip(" \n").split(" ")][0]
rank2[i] = r
i += 1
N1 = len(rank1)
N2 = len(rank2)
if (N1 != N2):
print "The two files must have the same number of nodes!!!!!"
sys.exit(2)
C = compute_C(rank1, rank2)
D = compute_D(rank1, rank2)
## We start from a random pairing, and compute the corresponding value of rho
pairing = []
if len(sys.argv) > 3:
lines = open(sys.argv[3], "r").readlines()
for l in lines:
if l[0] == "#" or l.strip(" \n").split(" ") == []:
continue
p1, p2 = [int(x) for x in l.strip(" \n").split(" ")][:2]
pairing.append((p1, p2))
else:
for i in range (N1):
pairing.append((i,i))
if len(pairing) != N1:
print "ERROR !!! The pairing should be of the same length of the ranking files!!!"
sys.exit(1)
rho = compute_rho(rank1, rank2, pairing, C, D)
print rho
|