1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html >
<head><title>2.3.1.0 tune_qnn_adaptive</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="generator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<meta name="originator" content="TeX4ht (http://www.cse.ohio-state.edu/~gurari/TeX4ht/)">
<!-- html,index=2,3,4,5,next -->
<meta name="src" content="mammult_doc.tex">
<meta name="date" content="2015-10-19 17:14:00">
<link rel="stylesheet" type="text/css" href="mammult_doc.css">
</head><body
>
<!--l. 3--><div class="crosslinks"><p class="noindent">[<a
href="mammult_docch3.html" >next</a>] [<a
href="mammult_docsu51.html" >prev</a>] [<a
href="mammult_docsu51.html#tailmammult_docsu51.html" >prev-tail</a>] [<a
href="#tailmammult_docsu52.html">tail</a>] [<a
href="mammult_docsu50.html#mammult_docsu52.html" >up</a>] </p></div>
<h5 class="subsubsectionHead"><a
id="x61-600002.3.1"></a><span
class="cmtt-10x-x-109">tune</span><span
class="cmtt-10x-x-109">_qnn</span><span
class="cmtt-10x-x-109">_adaptive</span></h5>
<!--l. 3--><p class="noindent" ><span
class="cmbx-10x-x-109">NAME</span>
<!--l. 3--><p class="indent" > <span
class="cmbx-10x-x-109">tune</span><span
class="cmbx-10x-x-109">_qnn</span><span
class="cmbx-10x-x-109">_adaptive </span>- Construct a multiplex with prescribed inter-layer
correlations.
<!--l. 3--><p class="noindent" ><span
class="cmbx-10x-x-109">SYNOPSYS</span>
<!--l. 3--><p class="indent" > <span
class="cmbx-10x-x-109">tune</span><span
class="cmbx-10x-x-109">_qnn</span><span
class="cmbx-10x-x-109">_adaptive </span><span
class="cmmi-10x-x-109"><</span><span
class="cmitt-10x-x-109">degs1</span><span
class="cmmi-10x-x-109">> <</span><span
class="cmitt-10x-x-109">degs2</span><span
class="cmmi-10x-x-109">> <</span><span
class="cmitt-10x-x-109">mu</span><span
class="cmmi-10x-x-109">> <</span><span
class="cmitt-10x-x-109">eps</span><span
class="cmmi-10x-x-109">> <</span><span
class="cmitt-10x-x-109">beta</span><span
class="cmmi-10x-x-109">></span>
<span
class="cmitt-10x-x-109">[RND|NAT|INV]</span>
<!--l. 52--><p class="noindent" ><span
class="cmbx-10x-x-109">DESCRIPTION</span>
<!--l. 52--><p class="indent" > This programs tunes the inter-layer degree correlation exponent <span
class="cmmi-10x-x-109">μ</span>. If
we consider two layers of a multiplex, and we denote by <span
class="cmmi-10x-x-109">k </span>the degree
of a node on the first layer and by <span
class="cmmi-10x-x-109">q </span>the degree of the same node on
the second layers, the inter-layer degree correlation function is defined
as:
<table
class="equation-star"><tr><td>
<center class="math-display" >
<img
src="mammult_doc25x.png" alt="-- ∑ ′ ′
q(k) = q P(q |k)
q′
" class="math-display" ></center></td></tr></table>
<!--l. 52--><p class="nopar" >
<!--l. 52--><p class="indent" > where <span class="overline"><span
class="cmmi-10x-x-109">q</span></span>(<span
class="cmmi-10x-x-109">k</span>) is the average degree on layer 2 of nodes having degree <span
class="cmmi-10x-x-109">k </span>on layer
1.
<!--l. 52--><p class="indent" > The program assumes that we want to set the degree correlation function
such that:
<table
class="equation-star"><tr><td>
<center class="math-display" >
<img
src="mammult_doc26x.png" alt="q(k) = akμ
" class="math-display" ></center></td></tr></table>
<!--l. 52--><p class="nopar" >
<!--l. 52--><p class="indent" > where the exponent of the power-law function is given by the user
(it is indeed the parameter <span
class="cmti-10x-x-109">mu</span>), and successively adjusts the pairing
between nodes at the two layers in order to obtain a correlation function as
close as possible to the desired one. The files <span
class="cmti-10x-x-109">degs1 </span>and <span
class="cmti-10x-x-109">degs2 </span>contain,
respectively, the degrees of the nodes on the first layer and on the second
layer.
<!--l. 52--><p class="indent" > The parameter <span
class="cmti-10x-x-109">eps </span>is the accuracy of <span
class="cmti-10x-x-109">mu</span>. For instance, if <span
class="cmti-10x-x-109">mu </span>is set equal to
-0.25 and <span
class="cmti-10x-x-109">eps </span>is equal to 0.0001, the program stops when the configuration of
node pairing corresponds to a value of the exponent <span
class="cmmi-10x-x-109">μ </span>which differs from -0.25 by
less than 0.0001.
<!--l. 52--><p class="indent" > The parameter <span
class="cmti-10x-x-109">beta </span>is the typical inverse temperature of simulated
annealing.
<!--l. 52--><p class="indent" > If no other parameter is specified, or if the last parameter is <span
class="cmtt-10x-x-109">RND</span>, the program
starts from a random pairing of nodes. If the last parameter is <span
class="cmtt-10x-x-109">NAT </span>then the
program assumes that the initial pairing is the natural one, where the nodes have
the same ID on both layers. Finally, if <span
class="cmtt-10x-x-109">INV </span>is specified, the initial pairing is the
inverse pairing, i.e. the one where node 0 on layer 1 is paired with node N-1 on
layer 2, and so on.
<!--l. 62--><p class="noindent" ><span
class="cmbx-10x-x-109">OUTPUT</span>
<!--l. 62--><p class="indent" > The program prints on <span
class="cmtt-10x-x-109">stdout </span>a pairing, i.e. a list of lines in the
format:
<!--l. 62--><p class="indent" >   <span
class="cmti-10x-x-109">IDL1 IDL2</span>
<!--l. 62--><p class="indent" > where <span
class="cmti-10x-x-109">IDL1 </span>is the ID of the node on layer 1 and <span
class="cmti-10x-x-109">IDL2 </span>is the corresponding
ID of the same node on layer 2.
<!--l. 64--><p class="noindent" ><span
class="cmbx-10x-x-109">REFERENCE</span>
<!--l. 64--><p class="indent" > V. Nicosia, V. Latora, “Measuring and modeling correlations in multiplex
networks”, <span
class="cmti-10x-x-109">Phys. Rev. E </span><span
class="cmbx-10x-x-109">92</span>, 032805 (2015).
<!--l. 64--><p class="indent" > Link to paper: <a
href="http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032805" class="url" ><span
class="cmtt-10x-x-109">http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.032805</span></a>
<!--l. 261--><div class="crosslinks"><p class="noindent">[<a
href="mammult_docch3.html" >next</a>] [<a
href="mammult_docsu51.html" >prev</a>] [<a
href="mammult_docsu51.html#tailmammult_docsu51.html" >prev-tail</a>] [<a
href="mammult_docsu52.html" >front</a>] [<a
href="mammult_docsu50.html#mammult_docsu52.html" >up</a>] </p></div>
<!--l. 261--><p class="indent" > <a
id="tailmammult_docsu52.html"></a>
</body></html>
|