/** * This program is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, either version 3 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see * <http://www.gnu.org/licenses/>. * * (c) Vincenzo Nicosia 2009-2017 -- <v.nicosia@qmul.ac.uk> * * This file is part of NetBunch, a package for complex network * analysis and modelling. For more information please visit: * * http://www.complex-networks.net/ * * If you use this software, please add a reference to * * V. Latora, V. Nicosia, G. Russo * "Complex Networks: Principles, Methods and Applications" * Cambridge University Press (2017) * ISBN: 9781107103184 * *********************************************************************** * * This program implements the fitness model proposed by Bianconi and * Barabasi, where the attachment probability is: * * \Pi_{i->j} \propto a_j * k_j * * where a_j is the actractiveness of node j. * * * References: * * [1] G. Bianconi, A.-L. Barabasi, " Competition and multiscaling in * evolving networks". EPL-Europhys. Lett. 54 (2001), 436. * */ #include <stdio.h> #include <stdlib.h> #include <time.h> #include "utils.h" #include "cum_distr.h" void usage(char *argv[]){ printf("********************************************************************\n" "** **\n" "** -*- bb_fitness -*- **\n" "** **\n" "** Grow a network of 'N' nodes using the fitness model proposed **\n" "** by Bianconi and Barabasi. **\n" "** **\n" "** The initial network is a clique of 'n0' nodes, and each new **\n" "** node creates 'm' edges. The attachment probability is of **\n" "** the form: **\n" "** **\n" "** P(i->j) ~ a_j * k_j **\n" "** **\n" "** where a_j is the attractiveness of node j. The values of **\n" "** node attractiveness are sampled uniformly at random in **\n" "** [0,1]. **\n" "** **\n" "** The program prints on STDOUT the edge-list of the final **\n" "** graph. **\n" "** **\n" "** If 'FIT' is specified as a fourth parameter, the values **\n" "** of node attractiveness are printed on STDERR. **\n" "** **\n" "********************************************************************\n" " This is Free Software - You can use and distribute it under \n" " the terms of the GNU General Public License, version 3 or later\n\n" " (c) Vincenzo Nicosia 2009-2017 (v.nicosia@qmul.ac.uk)\n\n" "********************************************************************\n\n" ); printf("Usage: %s <N> <m> <n0> [SHOW]\n", argv[0]); } int init_network(unsigned int *I, unsigned int *J, int n0, double *a, cum_distr_t *d){ unsigned int n, i, S_num; S_num = 0; for(n=0; n<n0; n++){ for(i=n+1; i<n0; i++){ I[S_num] = n; J[S_num] = i % n0; S_num += 1; } cum_distr_add(d, n, n0*a[n]); } return S_num; } int already_neighbour(unsigned int *J, int S_num, int j, int dest){ int i; for(i=S_num; i< S_num + j; i ++){ if (J[i] == dest) return 1; } return 0; } int bb_fitness(unsigned int *I, unsigned int *J, unsigned int N, unsigned int m, unsigned int n0, double* a){ cum_distr_t *d = NULL; unsigned int n, j, dest, S_num; d = cum_distr_init(N * m); S_num = init_network(I, J, n0, a, d); n = n0; while (n<N){ for(j=0; j<m; j++){ I[S_num+j] = n; dest = cum_distr_sample(d); while(already_neighbour(J, S_num, j, dest)){ dest = cum_distr_sample(d); } J[S_num + j] = dest; } cum_distr_add(d, n, m*a[n]); for (j=0; j<m; j++){ cum_distr_add(d, J[S_num + j], a[ J[S_num + j] ]); } S_num += m; n += 1; } cum_distr_destroy(d); return S_num; } void dump_graph(unsigned int *I, unsigned int *J, unsigned int K){ unsigned int i; for(i=0; i<K; i++){ printf("%d %d\n", J[i], I[i]); } } void init_fitness_uniform(double *a, unsigned int N){ unsigned int i; for(i=0; i<N; i++){ a[i] = 1.0 * rand() / RAND_MAX; } } void dump_fitness(double *a, unsigned int N){ int i; for(i=0; i<N; i++){ fprintf(stderr, "%g\n", a[i]); } } int main(int argc, char *argv[]){ int N, m, n0, K; unsigned int *I, *J; double *a; if (argc < 4){ usage(argv); exit(1); } N = atoi(argv[1]); m = atoi(argv[2]); n0 = atoi(argv[3]); a = malloc(N * sizeof(double)); srand(time(NULL)); if (N < 1){ fprintf(stderr, "N must be positive\n"); exit(1); } if(m > n0){ fprintf(stderr, "n0 cannot be smaller than m\n"); exit(1); } if (n0<1){ fprintf(stderr, "n0 must be positive\n"); exit(1); } if (m < 1){ fprintf(stderr, "m must be positive\n"); exit(1); } I = malloc(N * m * sizeof(unsigned int)); J = malloc(N * m * sizeof(unsigned int)); a = malloc(N * sizeof(double)); init_fitness_uniform(a, N); K = bb_fitness(I, J, N, m, n0, a); dump_graph(I, J, K); if (argc > 4 && !my_strcasecmp(argv[4], "SHOW")){ dump_fitness(a, N); } free(a); free(I); free(J); }