<!DOCTYPE html>
<html>
<head>
  <meta http-equiv='content-type' value='text/html;charset=utf8'>
  <meta name='generator' value='Ronn/v0.7.3 (http://github.com/rtomayko/ronn/tree/0.7.3)'>
  <title>fitmle(1) - Fit a set of values with a power-law distribution</title>
  <style type='text/css' media='all'>
  /* style: man */
  body#manpage {margin:0}
  .mp {max-width:100ex;padding:0 9ex 1ex 4ex}
  .mp p,.mp pre,.mp ul,.mp ol,.mp dl {margin:0 0 20px 0}
  .mp h2 {margin:10px 0 0 0}
  .mp > p,.mp > pre,.mp > ul,.mp > ol,.mp > dl {margin-left:8ex}
  .mp h3 {margin:0 0 0 4ex}
  .mp dt {margin:0;clear:left}
  .mp dt.flush {float:left;width:8ex}
  .mp dd {margin:0 0 0 9ex}
  .mp h1,.mp h2,.mp h3,.mp h4 {clear:left}
  .mp pre {margin-bottom:20px}
  .mp pre+h2,.mp pre+h3 {margin-top:22px}
  .mp h2+pre,.mp h3+pre {margin-top:5px}
  .mp img {display:block;margin:auto}
  .mp h1.man-title {display:none}
  .mp,.mp code,.mp pre,.mp tt,.mp kbd,.mp samp,.mp h3,.mp h4 {font-family:monospace;font-size:14px;line-height:1.42857142857143}
  .mp h2 {font-size:16px;line-height:1.25}
  .mp h1 {font-size:20px;line-height:2}
  .mp {text-align:justify;background:#fff}
  .mp,.mp code,.mp pre,.mp pre code,.mp tt,.mp kbd,.mp samp {color:#131211}
  .mp h1,.mp h2,.mp h3,.mp h4 {color:#030201}
  .mp u {text-decoration:underline}
  .mp code,.mp strong,.mp b {font-weight:bold;color:#131211}
  .mp em,.mp var {font-style:italic;color:#232221;text-decoration:none}
  .mp a,.mp a:link,.mp a:hover,.mp a code,.mp a pre,.mp a tt,.mp a kbd,.mp a samp {color:#0000ff}
  .mp b.man-ref {font-weight:normal;color:#434241}
  .mp pre {padding:0 4ex}
  .mp pre code {font-weight:normal;color:#434241}
  .mp h2+pre,h3+pre {padding-left:0}
  ol.man-decor,ol.man-decor li {margin:3px 0 10px 0;padding:0;float:left;width:33%;list-style-type:none;text-transform:uppercase;color:#999;letter-spacing:1px}
  ol.man-decor {width:100%}
  ol.man-decor li.tl {text-align:left}
  ol.man-decor li.tc {text-align:center;letter-spacing:4px}
  ol.man-decor li.tr {text-align:right;float:right}
  </style>
  <style type='text/css' media='all'>
  /* style: toc */
  .man-navigation {display:block !important;position:fixed;top:0;left:113ex;height:100%;width:100%;padding:48px 0 0 0;border-left:1px solid #dbdbdb;background:#eee}
  .man-navigation a,.man-navigation a:hover,.man-navigation a:link,.man-navigation a:visited {display:block;margin:0;padding:5px 2px 5px 30px;color:#999;text-decoration:none}
  .man-navigation a:hover {color:#111;text-decoration:underline}
  </style>
</head>
<!--
  The following styles are deprecated and will be removed at some point:
  div#man, div#man ol.man, div#man ol.head, div#man ol.man.

  The .man-page, .man-decor, .man-head, .man-foot, .man-title, and
  .man-navigation should be used instead.
-->
<body id='manpage'>
  <div class='mp' id='man'>

  <div class='man-navigation' style='display:none'>
    <a href="#NAME">NAME</a>
    <a href="#SYNOPSIS">SYNOPSIS</a>
    <a href="#DESCRIPTION">DESCRIPTION</a>
    <a href="#PARAMETERS">PARAMETERS</a>
    <a href="#OUTPUT">OUTPUT</a>
    <a href="#EXAMPLES">EXAMPLES</a>
    <a href="#SEE-ALSO">SEE ALSO</a>
    <a href="#REFERENCES">REFERENCES</a>
    <a href="#AUTHORS">AUTHORS</a>
  </div>

  <ol class='man-decor man-head man head'>
    <li class='tl'>fitmle(1)</li>
    <li class='tc'>www.complex-networks.net</li>
    <li class='tr'>fitmle(1)</li>
  </ol>

  <h2 id="NAME">NAME</h2>
<p class="man-name">
  <code>fitmle</code> - <span class="man-whatis">Fit a set of values with a power-law distribution</span>
</p>

<h2 id="SYNOPSIS">SYNOPSIS</h2>

<p><code>fitmle</code> <var>data_in</var> [<var>tol</var> [TEST [<var>num_test</var>]]]</p>

<h2 id="DESCRIPTION">DESCRIPTION</h2>

<p><code>fitmle</code> fits the data points contained in the file <var>data_in</var> with a
power-law function P(k) ~ k<sup>-gamma</sup>, using the Maximum-Likelihood
Estimator (MLE). In particular, <code>fitmle</code> finds the exponent <code>gamma</code>
and the minimum of the values provided on input for which the
power-law behaviour holds. The second (optional) argument <var>tol</var> sets
the acceptable statistical error on the estimate of the exponent.</p>

<p>If <code>TEST</code> is provided, the program associates a p-value to the
goodness of the fit, based on the Kolmogorov-Smirnov statistics
computed on <var>num_test</var> sampled distributions from the theoretical
power-law function. If <var>num_test</var> is not provided, the test is based
on 100 sampled distributions.</p>

<h2 id="PARAMETERS">PARAMETERS</h2>

<dl>
<dt class="flush"><var>data_in</var></dt><dd><p>  Set of values to fit. If is equal to <code>-</code> (dash), read the set from
  STDIN.</p></dd>
<dt class="flush"><var>tol</var></dt><dd><p>  The acceptable statistical error on the estimation of the
  exponent. If omitted, it is set to 0.1.</p></dd>
<dt class="flush">TEST</dt><dd><p>  If the third parameter is <code>TEST</code>, the program computes an estimate
  of the p-value associated to the best-fit, based on <var>num_test</var>
  synthetic samples of the same size of the input set.</p></dd>
<dt><var>num_test</var></dt><dd><p>  Number of synthetic samples to use for the estimation of the
  p-value of the best fit.</p></dd>
</dl>


<h2 id="OUTPUT">OUTPUT</h2>

<p>If <code>fitmle</code> is given less than three parameters (i.e., if <code>TEST</code> is
not specified), the output is a line in the format:</p>

<pre><code>    gamma k_min ks
</code></pre>

<p>where <code>gamma</code> is the estimate for the exponent, <code>k_min</code> is the
smallest of the input values for which the power-law behaviour holds,
and <code>ks</code> is the value of the Kolmogorov-Smirnov statistics of the
best-fit.</p>

<p>If <code>TEST</code> is specified, the output line contains also the estimate of
the p-value of the best fit:</p>

<pre><code>    gamma k_min ks p-value
</code></pre>

<p>where <code>p-value</code> is based on <var>num_test</var> samples (or just 100, if
<var>num_test</var> is not specified) of the same size of the input, obtained
from the theoretical power-law function computed as a best fit.</p>

<h2 id="EXAMPLES">EXAMPLES</h2>

<p>Let us assume that the file <code>AS-20010316.net_degs</code> contains the degree
sequence of the data set <code>AS-20010316.net</code> (the graph of the Internet
at the AS level in March 2001). The exponent of the best-fit power-law
distribution can be obtained by using:</p>

<pre><code>    $ fitmle AS-20010316.net_degs 
    Using discrete fit
    2.06165 6 0.031626 0.17
    $
</code></pre>

<p>where <code>2.06165</code> is the estimated value of the exponent <code>gamma</code>, <code>6</code> is
the minimum degree value for which the power-law behaviour holds, and
<code>0.031626</code> is the value of the Kolmogorov-Smirnov statistics of the
best-fit. The program is also telling us that it decided to use the
discrete fitting procedure, since all the values in
<code>AS-20010316.net_degs</code> are integers. The latter information is printed
to STDERR.</p>

<p>It is possible to compute the p-value of the estimate by running:</p>

<pre><code>    $ fitmle AS-20010316.net_degs 0.1 TEST
    Using discrete fit
    2.06165 6 0.031626 0.17
    $
</code></pre>

<p>which provides a p-value equal to 0.17, meaning that 17% of the
synthetic samples showed a value of the KS statistics larger than that
of the best-fit. The estimation of the p-value here is based on 100
synthetic samples, since <var>num_test</var> was not provided. If we allow a
slightly larger value of the statistical error on the estimate of the
exponent <code>gamma</code>, we obtain different values of <code>gamma</code> and <code>k_min</code>,
and a much higher p-value:</p>

<pre><code>    $ fitmle AS-20010316.net_degs 0.15 TEST 1000
    Using discrete fit
    2.0585 19 0.0253754 0.924
    $
</code></pre>

<p>Notice that in this case, the p-value of the estimate is equal to
0.924, and is based on 1000 synthetic samples.</p>

<h2 id="SEE-ALSO">SEE ALSO</h2>

<p><span class="man-ref">deg_seq<span class="s">(1)</span></span>, <span class="man-ref">power_law<span class="s">(1)</span></span></p>

<h2 id="REFERENCES">REFERENCES</h2>

<ul>
<li><p>A. Clauset, C. R. Shalizi, and M. E. J. Newman. "Power-law
distributions in empirical data". SIAM Rev. 51, (2007), 661-703.</p></li>
<li><p>V. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles,
Methods and Applications", Chapter 5, Cambridge University Press
(2017)</p></li>
</ul>


<h2 id="AUTHORS">AUTHORS</h2>

<p>(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 <code>&lt;v.nicosia@qmul.ac.uk&gt;</code>.</p>


  <ol class='man-decor man-foot man foot'>
    <li class='tl'>www.complex-networks.net</li>
    <li class='tc'>September 2017</li>
    <li class='tr'>fitmle(1)</li>
  </ol>

  </div>
</body>
</html>