<!DOCTYPE html> <html> <head> <meta http-equiv='content-type' value='text/html;charset=utf8'> <meta name='generator' value='Ronn/v0.7.3 (http://github.com/rtomayko/ronn/tree/0.7.3)'> <title>fitmle(1) - Fit a set of values with a power-law distribution</title> <style type='text/css' media='all'> /* style: man */ body#manpage {margin:0} .mp {max-width:100ex;padding:0 9ex 1ex 4ex} .mp p,.mp pre,.mp ul,.mp ol,.mp dl {margin:0 0 20px 0} .mp h2 {margin:10px 0 0 0} .mp > p,.mp > pre,.mp > ul,.mp > ol,.mp > dl {margin-left:8ex} .mp h3 {margin:0 0 0 4ex} .mp dt {margin:0;clear:left} .mp dt.flush {float:left;width:8ex} .mp dd {margin:0 0 0 9ex} .mp h1,.mp h2,.mp h3,.mp h4 {clear:left} .mp pre {margin-bottom:20px} .mp pre+h2,.mp pre+h3 {margin-top:22px} .mp h2+pre,.mp h3+pre {margin-top:5px} .mp img {display:block;margin:auto} .mp h1.man-title {display:none} .mp,.mp code,.mp pre,.mp tt,.mp kbd,.mp samp,.mp h3,.mp h4 {font-family:monospace;font-size:14px;line-height:1.42857142857143} .mp h2 {font-size:16px;line-height:1.25} .mp h1 {font-size:20px;line-height:2} .mp {text-align:justify;background:#fff} .mp,.mp code,.mp pre,.mp pre code,.mp tt,.mp kbd,.mp samp {color:#131211} .mp h1,.mp h2,.mp h3,.mp h4 {color:#030201} .mp u {text-decoration:underline} .mp code,.mp strong,.mp b {font-weight:bold;color:#131211} .mp em,.mp var {font-style:italic;color:#232221;text-decoration:none} .mp a,.mp a:link,.mp a:hover,.mp a code,.mp a pre,.mp a tt,.mp a kbd,.mp a samp {color:#0000ff} .mp b.man-ref {font-weight:normal;color:#434241} .mp pre {padding:0 4ex} .mp pre code {font-weight:normal;color:#434241} .mp h2+pre,h3+pre {padding-left:0} ol.man-decor,ol.man-decor li {margin:3px 0 10px 0;padding:0;float:left;width:33%;list-style-type:none;text-transform:uppercase;color:#999;letter-spacing:1px} ol.man-decor {width:100%} ol.man-decor li.tl {text-align:left} ol.man-decor li.tc {text-align:center;letter-spacing:4px} ol.man-decor li.tr {text-align:right;float:right} </style> <style type='text/css' media='all'> /* style: toc */ .man-navigation {display:block !important;position:fixed;top:0;left:113ex;height:100%;width:100%;padding:48px 0 0 0;border-left:1px solid #dbdbdb;background:#eee} .man-navigation a,.man-navigation a:hover,.man-navigation a:link,.man-navigation a:visited {display:block;margin:0;padding:5px 2px 5px 30px;color:#999;text-decoration:none} .man-navigation a:hover {color:#111;text-decoration:underline} </style> </head> <!-- The following styles are deprecated and will be removed at some point: div#man, div#man ol.man, div#man ol.head, div#man ol.man. The .man-page, .man-decor, .man-head, .man-foot, .man-title, and .man-navigation should be used instead. --> <body id='manpage'> <div class='mp' id='man'> <div class='man-navigation' style='display:none'> <a href="#NAME">NAME</a> <a href="#SYNOPSIS">SYNOPSIS</a> <a href="#DESCRIPTION">DESCRIPTION</a> <a href="#PARAMETERS">PARAMETERS</a> <a href="#OUTPUT">OUTPUT</a> <a href="#EXAMPLES">EXAMPLES</a> <a href="#SEE-ALSO">SEE ALSO</a> <a href="#REFERENCES">REFERENCES</a> <a href="#AUTHORS">AUTHORS</a> </div> <ol class='man-decor man-head man head'> <li class='tl'>fitmle(1)</li> <li class='tc'>www.complex-networks.net</li> <li class='tr'>fitmle(1)</li> </ol> <h2 id="NAME">NAME</h2> <p class="man-name"> <code>fitmle</code> - <span class="man-whatis">Fit a set of values with a power-law distribution</span> </p> <h2 id="SYNOPSIS">SYNOPSIS</h2> <p><code>fitmle</code> <var>data_in</var> [<var>tol</var> [TEST [<var>num_test</var>]]]</p> <h2 id="DESCRIPTION">DESCRIPTION</h2> <p><code>fitmle</code> fits the data points contained in the file <var>data_in</var> with a power-law function P(k) ~ k<sup>-gamma</sup>, using the Maximum-Likelihood Estimator (MLE). In particular, <code>fitmle</code> finds the exponent <code>gamma</code> and the minimum of the values provided on input for which the power-law behaviour holds. The second (optional) argument <var>tol</var> sets the acceptable statistical error on the estimate of the exponent.</p> <p>If <code>TEST</code> is provided, the program associates a p-value to the goodness of the fit, based on the Kolmogorov-Smirnov statistics computed on <var>num_test</var> sampled distributions from the theoretical power-law function. If <var>num_test</var> is not provided, the test is based on 100 sampled distributions.</p> <h2 id="PARAMETERS">PARAMETERS</h2> <dl> <dt class="flush"><var>data_in</var></dt><dd><p> Set of values to fit. If is equal to <code>-</code> (dash), read the set from STDIN.</p></dd> <dt class="flush"><var>tol</var></dt><dd><p> The acceptable statistical error on the estimation of the exponent. If omitted, it is set to 0.1.</p></dd> <dt class="flush">TEST</dt><dd><p> If the third parameter is <code>TEST</code>, the program computes an estimate of the p-value associated to the best-fit, based on <var>num_test</var> synthetic samples of the same size of the input set.</p></dd> <dt><var>num_test</var></dt><dd><p> Number of synthetic samples to use for the estimation of the p-value of the best fit.</p></dd> </dl> <h2 id="OUTPUT">OUTPUT</h2> <p>If <code>fitmle</code> is given less than three parameters (i.e., if <code>TEST</code> is not specified), the output is a line in the format:</p> <pre><code> gamma k_min ks </code></pre> <p>where <code>gamma</code> is the estimate for the exponent, <code>k_min</code> is the smallest of the input values for which the power-law behaviour holds, and <code>ks</code> is the value of the Kolmogorov-Smirnov statistics of the best-fit.</p> <p>If <code>TEST</code> is specified, the output line contains also the estimate of the p-value of the best fit:</p> <pre><code> gamma k_min ks p-value </code></pre> <p>where <code>p-value</code> is based on <var>num_test</var> samples (or just 100, if <var>num_test</var> is not specified) of the same size of the input, obtained from the theoretical power-law function computed as a best fit.</p> <h2 id="EXAMPLES">EXAMPLES</h2> <p>Let us assume that the file <code>AS-20010316.net_degs</code> contains the degree sequence of the data set <code>AS-20010316.net</code> (the graph of the Internet at the AS level in March 2001). The exponent of the best-fit power-law distribution can be obtained by using:</p> <pre><code> $ fitmle AS-20010316.net_degs Using discrete fit 2.06165 6 0.031626 0.17 $ </code></pre> <p>where <code>2.06165</code> is the estimated value of the exponent <code>gamma</code>, <code>6</code> is the minimum degree value for which the power-law behaviour holds, and <code>0.031626</code> is the value of the Kolmogorov-Smirnov statistics of the best-fit. The program is also telling us that it decided to use the discrete fitting procedure, since all the values in <code>AS-20010316.net_degs</code> are integers. The latter information is printed to STDERR.</p> <p>It is possible to compute the p-value of the estimate by running:</p> <pre><code> $ fitmle AS-20010316.net_degs 0.1 TEST Using discrete fit 2.06165 6 0.031626 0.17 $ </code></pre> <p>which provides a p-value equal to 0.17, meaning that 17% of the synthetic samples showed a value of the KS statistics larger than that of the best-fit. The estimation of the p-value here is based on 100 synthetic samples, since <var>num_test</var> was not provided. If we allow a slightly larger value of the statistical error on the estimate of the exponent <code>gamma</code>, we obtain different values of <code>gamma</code> and <code>k_min</code>, and a much higher p-value:</p> <pre><code> $ fitmle AS-20010316.net_degs 0.15 TEST 1000 Using discrete fit 2.0585 19 0.0253754 0.924 $ </code></pre> <p>Notice that in this case, the p-value of the estimate is equal to 0.924, and is based on 1000 synthetic samples.</p> <h2 id="SEE-ALSO">SEE ALSO</h2> <p><span class="man-ref">deg_seq<span class="s">(1)</span></span>, <span class="man-ref">power_law<span class="s">(1)</span></span></p> <h2 id="REFERENCES">REFERENCES</h2> <ul> <li><p>A. Clauset, C. R. Shalizi, and M. E. J. Newman. "Power-law distributions in empirical data". SIAM Rev. 51, (2007), 661-703.</p></li> <li><p>V. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles, Methods and Applications", Chapter 5, Cambridge University Press (2017)</p></li> </ul> <h2 id="AUTHORS">AUTHORS</h2> <p>(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 <code><v.nicosia@qmul.ac.uk></code>.</p> <ol class='man-decor man-foot man foot'> <li class='tl'>www.complex-networks.net</li> <li class='tc'>September 2017</li> <li class='tr'>fitmle(1)</li> </ol> </div> </body> </html>