From 3aee2fd43e3059a699af2b63c6f2395e5a55e515 Mon Sep 17 00:00:00 2001 From: KatolaZ Date: Wed, 27 Sep 2017 15:06:31 +0100 Subject: First commit on github -- NetBunch 1.0 --- doc/power_law.md | 118 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 doc/power_law.md (limited to 'doc/power_law.md') diff --git a/doc/power_law.md b/doc/power_law.md new file mode 100644 index 0000000..47bef2c --- /dev/null +++ b/doc/power_law.md @@ -0,0 +1,118 @@ +power_law(1) -- Sample N integers from a discrete power-law distribution +====== + +## SYNOPSIS + +`power_law` + +## DESCRIPTION + +`power_law` samples elements from the discrete power-law +distribution + + P(k) ~ k^{gamma} + +where + + k_min <= k <= k_max, gamma < 1 + +The program can be used to generate a power-law degree distribution +with an assigned value of the exponent . + + +## PARAMETERS + +* : + Exponent of the power-law distribution. + +* , : + Boundaries of the sampling interval. + +* + The number of samples to generate + +## OUTPUT + +`power_law` prints on the standard output the sampled values, one per +line, in the format: + + s1 + s2 + s3 + ... + sN + +The program returns the value `0` if the sum of the samples is even, +or returns `1` otherwise. The return value can be used to determine +whether the set of samples can correspond to a degree sequence (if the +sum of the sequence is odd, then the sequence cannot be a valid degree +sequence). See [RETURN VALUES][] below. + +## EXAMPLES + +To generate independent samples from the power-law +distribution `P(k) ~ k^(-3)`, where samples are in the interval +`[3, 50]`, we can use: + + $ power_law -3.0 3 50 1000 + 11 + 3 + 3 + 5 + 6 + 7 + .... + 8 + 3 + $ + +To save the samples in the file `pl_-3.0_3_50_1000`, we redirect STDOUT: + + $ power_law -3.0 3 50 1000 > pl_-3.0_3_50_1000 + +## RETURN VALUES + +The value returned by `power_law ` can be used to test whether the sum +of the resulting set of samples is even or odd. Under Windows +PowerShell, you can check the last exit code by inspecting the +variable `$lastExitCode` right after executing `power_law`, as in: + + > power_law -2.7 4 300 5000 > pl_-2.7_4_300_5000 + > $lastExitCode + + 0 + > + +In this case, the exit code is `0`, meaning that the resulting set of +samples has an even sum (and can be thus used as a degree +sequence). Under Linux/MacOS/Unix (and in general when using any +POSIX-compliant shell) you should check the value of the variable +`$?`, right after executing `power_law`, i.e.: + + $ power_law -2.5 3 500 5000 > pl_-2.5_3_500_5000 + $ echo $? + 1 + $ + +Notice that this particular run of `power_law` has produced a sequence +with an odd sum, which thus cannot correspond to a valid degree sequence. + +## SEE ALSO + +deg_seq(1), conf_model_deg(1), conf_model_deg_nocheck(1) + + +## REFERENCES + +* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles, + Methods and Applications", Chapter 5, Cambridge University Press + (2017) + +* V\. Latora, V. Nicosia, G. Russo, "Complex Networks: Principles, + Methods and Applications", Appendix 9, Cambridge University Press + (2017) + + +## AUTHORS + +(c) Vincenzo 'KatolaZ' Nicosia 2009-2017 ``. -- cgit v1.2.3