MAMMULT: Metrics And Models for MULTilayer networks
19th
October 2015
Contents
1
Structural descriptors
1.1
Basic node, edge, and layer properties
1.1.1
Node and layer activity
node
_activity.py
layer
_activity.py
node
_activity
_vectors.py
layer
_activity
_vectors.py
multiplexity.py
hamming
_dist.py
node
_degree
_vectors.py
degs
_to
_binary.py
degs
_to
_activity
_overlap.py
1.1.2
Layer aggregation
aggregate
_layers
_w.py
intersect
_layers.py
1.1.3
Node degree, participation coefficient, cartography
overlap
_degree.py
cartography
_from
_layers.py
cartography
_from
_deg
_vectors.py
cartography
_from
_columns.py
1.1.4
Edge overlap, reinforcement
edge
_overlap.py
avg
_edge
_overlap.py
reinforcement.py
1.2
Inter-layer degree correlations
1.2.1
Node ranking
rank
_nodes.py
rank
_nodes
_thresh.py
rank
_occurrence.py
1.2.2
Interlayer degree correlation coefficients
compute
_pearson.py
compute
_rho.py
compute
_tau.py
1.2.3
Interlayer degree correlation functions
dump
_k
_q
knn
_q
_from
_layers.py
knn
_q
_from
_degrees.py
fit
_knn
2
Models of multi-layer networks
2.1
Null models
2.1.1
Null-models of node and layer activity
model
_hypergeometric.py
model
_MDM.py
model
_MSM.py
model
_layer
_growth.py
2.2
Growing multiplex networks
2.2.1
Linear preferential attachment
nibilab
_linear
_delta
nibilab
_linear
_delay
nibilab
_linear
_delay
_mix
nibilab
_linear
_random
_times
2.2.2
Non-linear preferential attachment
nibilab
_nonlinear
2.2.3
Utilities
node
_deg
_over
_time.py
2.3
Multiplex networks with inter-layer degree correlations
2.3.1
Models based on simulated annealing
tune
_rho
tune
_qnn
_adaptive
3
Dynamics on multi-layer networks
3.1
Interacting opinions - Multilayer ising model
multiplex
_ising
3.2
Biased random walks
3.2.1
Stationary distribution
statdistr2
3.2.2
Entropy rate
entropyrate2add
entropyrate2mult
entropyrate2int
[
next
]