MAMMULT: Metrics And Models for MULTilayer networks


19th October 2015
Contents
1 Structural descriptors
 1.1 Basic node, edge, and layer properties
  1.1.1 Node and layer activity
   node_activity.py
   layer_activity.py
   node_activity_vectors.py
   layer_activity_vectors.py
   multiplexity.py
   hamming_dist.py
   node_degree_vectors.py
   degs_to_binary.py
   degs_to_activity_overlap.py
  1.1.2 Layer aggregation
   aggregate_layers_w.py
   intersect_layers.py
  1.1.3 Node degree, participation coefficient, cartography
   overlap_degree.py
   cartography_from_layers.py
   cartography_from_deg_vectors.py
   cartography_from_columns.py
  1.1.4 Edge overlap, reinforcement
   edge_overlap.py
   avg_edge_overlap.py
   reinforcement.py
 1.2 Inter-layer degree correlations
  1.2.1 Node ranking
   rank_nodes.py
   rank_nodes_thresh.py
   rank_occurrence.py
  1.2.2 Interlayer degree correlation coefficients
   compute_pearson.py
   compute_rho.py
   compute_tau.py
  1.2.3 Interlayer degree correlation functions
   dump_k_q
   knn_q_from_layers.py
   knn_q_from_degrees.py
   fit_knn
2 Models of multi-layer networks
 2.1 Null models
  2.1.1 Null-models of node and layer activity
   model_hypergeometric.py
   model_MDM.py
   model_MSM.py
   model_layer_growth.py
 2.2 Growing multiplex networks
  2.2.1 Linear preferential attachment
   nibilab_linear_delta
   nibilab_linear_delay
   nibilab_linear_delay_mix
   nibilab_linear_random_times
  2.2.2 Non-linear preferential attachment
   nibilab_nonlinear
  2.2.3 Utilities
   node_deg_over_time.py
 2.3 Multiplex networks with inter-layer degree correlations
  2.3.1 Models based on simulated annealing
   tune_rho
   tune_qnn_adaptive
3 Dynamics on multi-layer networks
 3.1 Interacting opinions - Multilayer ising model
   multiplex_ising
 3.2 Biased random walks
  3.2.1 Stationary distribution
   statdistr2
  3.2.2 Entropy rate
   entropyrate2add
   entropyrate2mult
   entropyrate2int

[next]